Smoothed Analysis for the Conjugate Gradient Algorithm

The purpose of this paper is to establish bounds on the rate of convergence of the conjugate gradient algorithm when the underlying matrix is a random positive definite perturbation of a deterministic positive definite matrix. We estimate all finite moments of a natural halting time when the random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
Hauptverfasser: Menon, G., Trogdon, T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148528
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Smoothed Analysis for the Conjugate Gradient Algorithm / G. Menon, T. Trogdon // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148528
record_format dspace
spelling Menon, G.
Trogdon, T.
2019-02-18T14:45:41Z
2019-02-18T14:45:41Z
2016
Smoothed Analysis for the Conjugate Gradient Algorithm / G. Menon, T. Trogdon // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 60B20; 65C50; 35Q15
DOI:10.3842/SIGMA.2016.109
https://nasplib.isofts.kiev.ua/handle/123456789/148528
The purpose of this paper is to establish bounds on the rate of convergence of the conjugate gradient algorithm when the underlying matrix is a random positive definite perturbation of a deterministic positive definite matrix. We estimate all finite moments of a natural halting time when the random perturbation is drawn from the Laguerre unitary ensemble in a critical scaling regime explored in Deift et al. (2016). These estimates are used to analyze the expected iteration count in the framework of smoothed analysis, introduced by Spielman and Teng (2001). The rigorous results are compared with numerical calculations in several cases of interest.
This paper is a contribution to the Special Issue on Asymptotics and Universality in Random Matrices, Random Growth Processes, Integrable Systems and Statistical Physics in honor of Percy Deift and Craig Tracy. The full collection is available at http://www.emis.de/journals/SIGMA/Deift-Tracy.html. This work was supported in part by grants NSF-DMS-1411278 (GM) and NSF-DMS-1303018 (TT). The authors thank Anne Greenbaum and Zdenˇek Strakoˇs for useful conversations, Folkmar Bornemann for suggesting that we consider the framework of smoothed analysis and the anonymous referees for suggesting additional numerical experiments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Smoothed Analysis for the Conjugate Gradient Algorithm
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Smoothed Analysis for the Conjugate Gradient Algorithm
spellingShingle Smoothed Analysis for the Conjugate Gradient Algorithm
Menon, G.
Trogdon, T.
title_short Smoothed Analysis for the Conjugate Gradient Algorithm
title_full Smoothed Analysis for the Conjugate Gradient Algorithm
title_fullStr Smoothed Analysis for the Conjugate Gradient Algorithm
title_full_unstemmed Smoothed Analysis for the Conjugate Gradient Algorithm
title_sort smoothed analysis for the conjugate gradient algorithm
author Menon, G.
Trogdon, T.
author_facet Menon, G.
Trogdon, T.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The purpose of this paper is to establish bounds on the rate of convergence of the conjugate gradient algorithm when the underlying matrix is a random positive definite perturbation of a deterministic positive definite matrix. We estimate all finite moments of a natural halting time when the random perturbation is drawn from the Laguerre unitary ensemble in a critical scaling regime explored in Deift et al. (2016). These estimates are used to analyze the expected iteration count in the framework of smoothed analysis, introduced by Spielman and Teng (2001). The rigorous results are compared with numerical calculations in several cases of interest.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148528
citation_txt Smoothed Analysis for the Conjugate Gradient Algorithm / G. Menon, T. Trogdon // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT menong smoothedanalysisfortheconjugategradientalgorithm
AT trogdont smoothedanalysisfortheconjugategradientalgorithm
first_indexed 2025-11-27T10:33:35Z
last_indexed 2025-11-27T10:33:35Z
_version_ 1850852100414636032