Smoothed Analysis for the Conjugate Gradient Algorithm
The purpose of this paper is to establish bounds on the rate of convergence of the conjugate gradient algorithm when the underlying matrix is a random positive definite perturbation of a deterministic positive definite matrix. We estimate all finite moments of a natural halting time when the random...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2016 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2016
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/148528 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Smoothed Analysis for the Conjugate Gradient Algorithm / G. Menon, T. Trogdon // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148528 |
|---|---|
| record_format |
dspace |
| spelling |
Menon, G. Trogdon, T. 2019-02-18T14:45:41Z 2019-02-18T14:45:41Z 2016 Smoothed Analysis for the Conjugate Gradient Algorithm / G. Menon, T. Trogdon // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 60B20; 65C50; 35Q15 DOI:10.3842/SIGMA.2016.109 https://nasplib.isofts.kiev.ua/handle/123456789/148528 The purpose of this paper is to establish bounds on the rate of convergence of the conjugate gradient algorithm when the underlying matrix is a random positive definite perturbation of a deterministic positive definite matrix. We estimate all finite moments of a natural halting time when the random perturbation is drawn from the Laguerre unitary ensemble in a critical scaling regime explored in Deift et al. (2016). These estimates are used to analyze the expected iteration count in the framework of smoothed analysis, introduced by Spielman and Teng (2001). The rigorous results are compared with numerical calculations in several cases of interest. This paper is a contribution to the Special Issue on Asymptotics and Universality in Random Matrices, Random Growth Processes, Integrable Systems and Statistical Physics in honor of Percy Deift and Craig Tracy. The full collection is available at http://www.emis.de/journals/SIGMA/Deift-Tracy.html. This work was supported in part by grants NSF-DMS-1411278 (GM) and NSF-DMS-1303018 (TT). The authors thank Anne Greenbaum and Zdenˇek Strakoˇs for useful conversations, Folkmar Bornemann for suggesting that we consider the framework of smoothed analysis and the anonymous referees for suggesting additional numerical experiments. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Smoothed Analysis for the Conjugate Gradient Algorithm Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Smoothed Analysis for the Conjugate Gradient Algorithm |
| spellingShingle |
Smoothed Analysis for the Conjugate Gradient Algorithm Menon, G. Trogdon, T. |
| title_short |
Smoothed Analysis for the Conjugate Gradient Algorithm |
| title_full |
Smoothed Analysis for the Conjugate Gradient Algorithm |
| title_fullStr |
Smoothed Analysis for the Conjugate Gradient Algorithm |
| title_full_unstemmed |
Smoothed Analysis for the Conjugate Gradient Algorithm |
| title_sort |
smoothed analysis for the conjugate gradient algorithm |
| author |
Menon, G. Trogdon, T. |
| author_facet |
Menon, G. Trogdon, T. |
| publishDate |
2016 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
The purpose of this paper is to establish bounds on the rate of convergence of the conjugate gradient algorithm when the underlying matrix is a random positive definite perturbation of a deterministic positive definite matrix. We estimate all finite moments of a natural halting time when the random perturbation is drawn from the Laguerre unitary ensemble in a critical scaling regime explored in Deift et al. (2016). These estimates are used to analyze the expected iteration count in the framework of smoothed analysis, introduced by Spielman and Teng (2001). The rigorous results are compared with numerical calculations in several cases of interest.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148528 |
| citation_txt |
Smoothed Analysis for the Conjugate Gradient Algorithm / G. Menon, T. Trogdon // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ. |
| work_keys_str_mv |
AT menong smoothedanalysisfortheconjugategradientalgorithm AT trogdont smoothedanalysisfortheconjugategradientalgorithm |
| first_indexed |
2025-11-27T10:33:35Z |
| last_indexed |
2025-11-27T10:33:35Z |
| _version_ |
1850852100414636032 |