Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature

We review the theory of orthogonal separation of variables of the Hamilton-Jacobi equation on spaces of constant curvature, highlighting key contributions to the theory by Benenti. This theory revolves around a special type of conformal Killing tensor, hereafter called a concircular tensor. First, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
Hauptverfasser: Rajaratnam, K., McLenaghan, R.G., Valero, C.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148531
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature / K. Rajaratnam, R.G. McLenaghan, C. Valero // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 41 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148531
record_format dspace
spelling Rajaratnam, K.
McLenaghan, R.G.
Valero, C.
2019-02-18T14:47:25Z
2019-02-18T14:47:25Z
2016
Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature / K. Rajaratnam, R.G. McLenaghan, C. Valero // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 41 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53C15; 70H20; 53A60
DOI:10.3842/SIGMA.2016.117
https://nasplib.isofts.kiev.ua/handle/123456789/148531
We review the theory of orthogonal separation of variables of the Hamilton-Jacobi equation on spaces of constant curvature, highlighting key contributions to the theory by Benenti. This theory revolves around a special type of conformal Killing tensor, hereafter called a concircular tensor. First, we show how to extend original results given by Benenti to intrinsically characterize all (orthogonal) separable coordinates in spaces of constant curvature using concircular tensors. This results in the construction of a special class of separable coordinates known as Kalnins-Eisenhart-Miller coordinates. Then we present the Benenti-Eisenhart-Kalnins-Miller separation algorithm, which uses concircular tensors to intrinsically search for Kalnins-Eisenhart-Miller coordinates which separate a given natural Hamilton-Jacobi equation. As a new application of the theory, we show how to obtain the separable coordinate systems in the two dimensional spaces of constant curvature, Minkowski and (Anti-)de Sitter space. We also apply the Benenti-Eisenhart-Kalnins-Miller separation algorithm to study the separability of the three dimensional Calogero-Moser and Morosi-Tondo systems.
This paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. We would like to thank the referees for their helpful comments and suggestions. This work was supported in part by a QEII-Graduate Scholarship in Science and Technology (KR), Natural Sciences and Engineering Research Council of Canada Discovery Grant (RGM) and Undergraduate Student Research Award (CV).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
spellingShingle Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
Rajaratnam, K.
McLenaghan, R.G.
Valero, C.
title_short Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
title_full Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
title_fullStr Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
title_full_unstemmed Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
title_sort orthogonal separation of the hamilton-jacobi equation on spaces of constant curvature
author Rajaratnam, K.
McLenaghan, R.G.
Valero, C.
author_facet Rajaratnam, K.
McLenaghan, R.G.
Valero, C.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We review the theory of orthogonal separation of variables of the Hamilton-Jacobi equation on spaces of constant curvature, highlighting key contributions to the theory by Benenti. This theory revolves around a special type of conformal Killing tensor, hereafter called a concircular tensor. First, we show how to extend original results given by Benenti to intrinsically characterize all (orthogonal) separable coordinates in spaces of constant curvature using concircular tensors. This results in the construction of a special class of separable coordinates known as Kalnins-Eisenhart-Miller coordinates. Then we present the Benenti-Eisenhart-Kalnins-Miller separation algorithm, which uses concircular tensors to intrinsically search for Kalnins-Eisenhart-Miller coordinates which separate a given natural Hamilton-Jacobi equation. As a new application of the theory, we show how to obtain the separable coordinate systems in the two dimensional spaces of constant curvature, Minkowski and (Anti-)de Sitter space. We also apply the Benenti-Eisenhart-Kalnins-Miller separation algorithm to study the separability of the three dimensional Calogero-Moser and Morosi-Tondo systems.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148531
citation_txt Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature / K. Rajaratnam, R.G. McLenaghan, C. Valero // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 41 назв. — англ.
work_keys_str_mv AT rajaratnamk orthogonalseparationofthehamiltonjacobiequationonspacesofconstantcurvature
AT mclenaghanrg orthogonalseparationofthehamiltonjacobiequationonspacesofconstantcurvature
AT valeroc orthogonalseparationofthehamiltonjacobiequationonspacesofconstantcurvature
first_indexed 2025-12-07T13:32:20Z
last_indexed 2025-12-07T13:32:20Z
_version_ 1850856534300426240