Integrability of Nonholonomic Heisenberg Type Systems

We show that some modern geometric methods of Hamiltonian dynamics can be directly applied to the nonholonomic Heisenberg type systems. As an example we present characteristic Killing tensors, compatible Poisson brackets, Lax matrices and classical r-matrices for the conformally Hamiltonian vector f...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2016
Main Authors: Grigoryev, Y. A., Sozonov, A.P., Tsiganov, A.V.
Format: Article
Language:English
Published: Інститут математики НАН України 2016
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148541
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Integrability of Nonholonomic Heisenberg Type Systems / Y. A. Grigoryev, A.P. Sozonov, A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148541
record_format dspace
spelling Grigoryev, Y. A.
Sozonov, A.P.
Tsiganov, A.V.
2019-02-18T14:53:57Z
2019-02-18T14:53:57Z
2016
Integrability of Nonholonomic Heisenberg Type Systems / Y. A. Grigoryev, A.P. Sozonov, A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 25 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37J60; 70G45; 70H45
DOI:10.3842/SIGMA.2016.112
https://nasplib.isofts.kiev.ua/handle/123456789/148541
We show that some modern geometric methods of Hamiltonian dynamics can be directly applied to the nonholonomic Heisenberg type systems. As an example we present characteristic Killing tensors, compatible Poisson brackets, Lax matrices and classical r-matrices for the conformally Hamiltonian vector fields obtained in a process of reduction of Hamiltonian vector fields by a nonholonomic constraint associated with the Heisenberg system.
We are very grateful to the referees for thorough analysis of the manuscript, constructive suggestions and proposed corrections, which certainly lead to a more profound discussion of the results. We are also deeply grateful A.V. Borisov and I.A. Bizayev for the relevant discussion. Section 2 was written by A.V. Tsiganov and supported by the Russian Science Foundation (project 15-12-20035). Section 3 was written by Yu.A. Grigoryev and A.P. Sozonov within the framework of the Russian Science Foundation (project 15-11-30007).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Integrability of Nonholonomic Heisenberg Type Systems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Integrability of Nonholonomic Heisenberg Type Systems
spellingShingle Integrability of Nonholonomic Heisenberg Type Systems
Grigoryev, Y. A.
Sozonov, A.P.
Tsiganov, A.V.
title_short Integrability of Nonholonomic Heisenberg Type Systems
title_full Integrability of Nonholonomic Heisenberg Type Systems
title_fullStr Integrability of Nonholonomic Heisenberg Type Systems
title_full_unstemmed Integrability of Nonholonomic Heisenberg Type Systems
title_sort integrability of nonholonomic heisenberg type systems
author Grigoryev, Y. A.
Sozonov, A.P.
Tsiganov, A.V.
author_facet Grigoryev, Y. A.
Sozonov, A.P.
Tsiganov, A.V.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show that some modern geometric methods of Hamiltonian dynamics can be directly applied to the nonholonomic Heisenberg type systems. As an example we present characteristic Killing tensors, compatible Poisson brackets, Lax matrices and classical r-matrices for the conformally Hamiltonian vector fields obtained in a process of reduction of Hamiltonian vector fields by a nonholonomic constraint associated with the Heisenberg system.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148541
fulltext
citation_txt Integrability of Nonholonomic Heisenberg Type Systems / Y. A. Grigoryev, A.P. Sozonov, A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT grigoryevya integrabilityofnonholonomicheisenbergtypesystems
AT sozonovap integrabilityofnonholonomicheisenbergtypesystems
AT tsiganovav integrabilityofnonholonomicheisenbergtypesystems
first_indexed 2025-11-24T09:17:30Z
last_indexed 2025-11-24T09:17:30Z
_version_ 1850844526044774400