Geometry of G-Structures via the Intrinsic Torsion

We study the geometry of a G-structure P inside the oriented orthonormal frame bundle SO(M) over an oriented Riemannian manifold M. We assume that G is connected and closed, so the quotient SO(n)/G, where n=dimM, is a normal homogeneous space and we equip SO(M) with the natural Riemannian structure...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2016
Автор: Niedziałomski, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148543
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geometry of G-Structures via the Intrinsic Torsion / K. Niedziałomski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148543
record_format dspace
spelling Niedziałomski, K.
2019-02-18T14:54:45Z
2019-02-18T14:54:45Z
2016
Geometry of G-Structures via the Intrinsic Torsion / K. Niedziałomski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53C10; 53C24; 53C43; 53C15
DOI:10.3842/SIGMA.2016.107
https://nasplib.isofts.kiev.ua/handle/123456789/148543
We study the geometry of a G-structure P inside the oriented orthonormal frame bundle SO(M) over an oriented Riemannian manifold M. We assume that G is connected and closed, so the quotient SO(n)/G, where n=dimM, is a normal homogeneous space and we equip SO(M) with the natural Riemannian structure induced from the structure on M and the Killing form of SO(n). We show, in particular, that minimality of P is equivalent to harmonicity of an induced section of the homogeneous bundle SO(M)×SO(n)SO(n)/G, with a Riemannian metric on M obtained as the pull-back with respect to this section of the Riemannian metric on the considered associated bundle, and to the minimality of the image of this section. We apply obtained results to the case of almost product structures, i.e., structures induced by plane fields.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Geometry of G-Structures via the Intrinsic Torsion
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Geometry of G-Structures via the Intrinsic Torsion
spellingShingle Geometry of G-Structures via the Intrinsic Torsion
Niedziałomski, K.
title_short Geometry of G-Structures via the Intrinsic Torsion
title_full Geometry of G-Structures via the Intrinsic Torsion
title_fullStr Geometry of G-Structures via the Intrinsic Torsion
title_full_unstemmed Geometry of G-Structures via the Intrinsic Torsion
title_sort geometry of g-structures via the intrinsic torsion
author Niedziałomski, K.
author_facet Niedziałomski, K.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study the geometry of a G-structure P inside the oriented orthonormal frame bundle SO(M) over an oriented Riemannian manifold M. We assume that G is connected and closed, so the quotient SO(n)/G, where n=dimM, is a normal homogeneous space and we equip SO(M) with the natural Riemannian structure induced from the structure on M and the Killing form of SO(n). We show, in particular, that minimality of P is equivalent to harmonicity of an induced section of the homogeneous bundle SO(M)×SO(n)SO(n)/G, with a Riemannian metric on M obtained as the pull-back with respect to this section of the Riemannian metric on the considered associated bundle, and to the minimality of the image of this section. We apply obtained results to the case of almost product structures, i.e., structures induced by plane fields.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148543
citation_txt Geometry of G-Structures via the Intrinsic Torsion / K. Niedziałomski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT niedziałomskik geometryofgstructuresviatheintrinsictorsion
first_indexed 2025-11-30T17:43:32Z
last_indexed 2025-11-30T17:43:32Z
_version_ 1850858360833835008