From Conformal Group to Symmetries of Hypergeometric Type Equations

We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
Hauptverfasser: Dereziński, J., Majewski, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148546
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148546
record_format dspace
spelling Dereziński, J.
Majewski, P.
2019-02-18T15:06:11Z
2019-02-18T15:06:11Z
2016
From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35J05; 33Cxx; 35B06
DOI:10.3842/SIGMA.2016.108
https://nasplib.isofts.kiev.ua/handle/123456789/148546
We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ₀F₁ equation follow from the Helmholtz equation in 2 dimensions.
We thank Tom Koornwinder and anonymous referees for useful remarks. J.D. gratefully acknowledges financial support of the National Science Center, Poland, under the grant UMO2014/15/B/ST1/00126.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
From Conformal Group to Symmetries of Hypergeometric Type Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title From Conformal Group to Symmetries of Hypergeometric Type Equations
spellingShingle From Conformal Group to Symmetries of Hypergeometric Type Equations
Dereziński, J.
Majewski, P.
title_short From Conformal Group to Symmetries of Hypergeometric Type Equations
title_full From Conformal Group to Symmetries of Hypergeometric Type Equations
title_fullStr From Conformal Group to Symmetries of Hypergeometric Type Equations
title_full_unstemmed From Conformal Group to Symmetries of Hypergeometric Type Equations
title_sort from conformal group to symmetries of hypergeometric type equations
author Dereziński, J.
Majewski, P.
author_facet Dereziński, J.
Majewski, P.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ₀F₁ equation follow from the Helmholtz equation in 2 dimensions.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148546
citation_txt From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ.
work_keys_str_mv AT derezinskij fromconformalgrouptosymmetriesofhypergeometrictypeequations
AT majewskip fromconformalgrouptosymmetriesofhypergeometrictypeequations
first_indexed 2025-12-07T16:30:30Z
last_indexed 2025-12-07T16:30:30Z
_version_ 1850867743648120832