Cartan Connections on Lie Groupoids and their Integrability

A multiplicatively closed, horizontal n-plane field D on a Lie groupoid G over M generalizes to intransitive geometry the classical notion of a Cartan connection. The infinitesimalization of the connection D is a Cartan connection ∇ on the Lie algebroid of G, a notion already studied elsewhere by th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
1. Verfasser: Blaom, A.D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148549
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Cartan Connections on Lie Groupoids and their Integrability / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:A multiplicatively closed, horizontal n-plane field D on a Lie groupoid G over M generalizes to intransitive geometry the classical notion of a Cartan connection. The infinitesimalization of the connection D is a Cartan connection ∇ on the Lie algebroid of G, a notion already studied elsewhere by the author. It is shown that ∇ may be regarded as infinitesimal parallel translation in the groupoid G along D. From this follows a proof that D defines a pseudoaction generating a pseudogroup of transformations on M precisely when the curvature of ∇ vanishes. A byproduct of this analysis is a detailed description of multiplication in the groupoid J¹G of one-jets of bisections of G.