Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds

An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2017
Hauptverfasser: Liu, Chiu-Chu Melissa, Sheshmani, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148556
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148556
record_format dspace
spelling Liu, Chiu-Chu Melissa
Sheshmani, A.
2019-02-18T15:36:56Z
2019-02-18T15:36:56Z
2017
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14C05; 14D20; 14F05; 14J30; 14N10
DOI:10.3842/SIGMA.2017.048
https://nasplib.isofts.kiev.ua/handle/123456789/148556
An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.
The first author would like to thank Tom Graber for his suggestion of generalizing the computations for toric manifolds in [23] to GKM manifolds. The second author would like to thank the Columbia University for hospitality during his visits. We wish to thank Rahul Pandharipande for his comments on an earlier version of this paper. This work is partially supported by NSF DMS-1159416 and NSF DMS-1206667.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
spellingShingle Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
Liu, Chiu-Chu Melissa
Sheshmani, A.
title_short Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_full Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_fullStr Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_full_unstemmed Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_sort equivariant gromov-witten invariants of algebraic gkm manifolds
author Liu, Chiu-Chu Melissa
Sheshmani, A.
author_facet Liu, Chiu-Chu Melissa
Sheshmani, A.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148556
citation_txt Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ.
work_keys_str_mv AT liuchiuchumelissa equivariantgromovwitteninvariantsofalgebraicgkmmanifolds
AT sheshmania equivariantgromovwitteninvariantsofalgebraicgkmmanifolds
first_indexed 2025-12-07T20:55:37Z
last_indexed 2025-12-07T20:55:37Z
_version_ 1850884423603453952