Hodge Numbers from Picard-Fuchs Equations

Given a variation of Hodge structure over P¹ with Hodge numbers (1,1,…,1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-Möller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2017
Hauptverfasser: Doran, C.F., Harder, A., Thompson, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148559
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Hodge Numbers from Picard-Fuchs Equations / C.F. Doran, A. Harder, A. Thompson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148559
record_format dspace
spelling Doran, C.F.
Harder, A.
Thompson, A.
2019-02-18T15:44:19Z
2019-02-18T15:44:19Z
2017
Hodge Numbers from Picard-Fuchs Equations / C.F. Doran, A. Harder, A. Thompson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 31 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14D07; 14D05; 14J32
DOI:10.3842/SIGMA.2017.045
https://nasplib.isofts.kiev.ua/handle/123456789/148559
Given a variation of Hodge structure over P¹ with Hodge numbers (1,1,…,1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-Möller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute the Hodge numbers of Zucker's Hodge structure on the corresponding parabolic cohomology groups. We also apply this to families of elliptic curves, K3 surfaces and Calabi-Yau threefolds.
This paper is a contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko Yui. The full collection is available at http://www.emis.de/journals/SIGMA/modular-forms.html. C.F. Doran (University of Alberta) was supported by the Natural Sciences and Engineering Research Council of Canada, the Pacific Institute for the Mathematical Sciences, and the Visiting Campobassi Professorship at the University of Maryland. A. Harder (University of Miami) was partially supported by the Simons Collaboration Grant in Homological Mirror Symmetry. A. Thompson (University of Warwick/University of Cambridge) was supported by the Engineering and Physical Sciences Research Council programme grant Classification, Computation, and Construction: New Methods in Geometry.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Hodge Numbers from Picard-Fuchs Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Hodge Numbers from Picard-Fuchs Equations
spellingShingle Hodge Numbers from Picard-Fuchs Equations
Doran, C.F.
Harder, A.
Thompson, A.
title_short Hodge Numbers from Picard-Fuchs Equations
title_full Hodge Numbers from Picard-Fuchs Equations
title_fullStr Hodge Numbers from Picard-Fuchs Equations
title_full_unstemmed Hodge Numbers from Picard-Fuchs Equations
title_sort hodge numbers from picard-fuchs equations
author Doran, C.F.
Harder, A.
Thompson, A.
author_facet Doran, C.F.
Harder, A.
Thompson, A.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Given a variation of Hodge structure over P¹ with Hodge numbers (1,1,…,1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-Möller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute the Hodge numbers of Zucker's Hodge structure on the corresponding parabolic cohomology groups. We also apply this to families of elliptic curves, K3 surfaces and Calabi-Yau threefolds.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148559
citation_txt Hodge Numbers from Picard-Fuchs Equations / C.F. Doran, A. Harder, A. Thompson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 31 назв. — англ.
work_keys_str_mv AT dorancf hodgenumbersfrompicardfuchsequations
AT hardera hodgenumbersfrompicardfuchsequations
AT thompsona hodgenumbersfrompicardfuchsequations
first_indexed 2025-12-07T17:24:16Z
last_indexed 2025-12-07T17:24:16Z
_version_ 1850871126932062208