Hodge Numbers from Picard-Fuchs Equations
Given a variation of Hodge structure over P¹ with Hodge numbers (1,1,…,1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-Möller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute th...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2017 |
| Main Authors: | Doran, C.F., Harder, A., Thompson, A. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2017
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/148559 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Hodge Numbers from Picard-Fuchs Equations / C.F. Doran, A. Harder, A. Thompson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 31 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Monodromy of an Inhomogeneous Picard-Fuchs Equation
by: Laporte, G., et al.
Published: (2012) -
On the 80th Birthday of Dmitry Borisovich Fuchs
by: Fialowski, Alice, et al.
Published: (2020) -
On modified Picard and Gauss—Weierstrass singular integrals
by: Rempulska, L., et al.
Published: (2005) -
Picard-Vessiot Extensions of Real Differential Fields
by: Crespo, T., et al.
Published: (2019) -
Non-Abelian Hodge Theory and Related Topics
by: Huang, Pengfei
Published: (2020)