Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation

A multi-Poisson structure on a Lie algebra g provides a systematic way to construct completely integrable Hamiltonian systems on g expressed in Lax form ∂Xλ/∂t=[Xλ,Aλ] in the sense of the isospectral deformation, where Xλ,Aλ∈g depend rationally on the indeterminate λ called the spectral parameter. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2017
1. Verfasser: Chiba, H.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148562
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148562
record_format dspace
spelling Chiba, H.
2019-02-18T15:51:51Z
2019-02-18T15:51:51Z
2017
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 18 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M35; 34M45; 34M55
DOI:10.3842/SIGMA.2017.025
https://nasplib.isofts.kiev.ua/handle/123456789/148562
A multi-Poisson structure on a Lie algebra g provides a systematic way to construct completely integrable Hamiltonian systems on g expressed in Lax form ∂Xλ/∂t=[Xλ,Aλ] in the sense of the isospectral deformation, where Xλ,Aλ∈g depend rationally on the indeterminate λ called the spectral parameter. In this paper, a method for modifying the isospectral deformation equation to the Lax equation ∂Xλ/∂t=[Xλ,Aλ]+∂Aλ/∂λ in the sense of the isomonodromic deformation, which exhibits the Painlevé property, is proposed. This method gives a few new Painlevé systems of dimension four.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
spellingShingle Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
Chiba, H.
title_short Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
title_full Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
title_fullStr Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
title_full_unstemmed Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
title_sort multi-poisson approach to the painlevé equations: from the isospectral deformation to the isomonodromic deformation
author Chiba, H.
author_facet Chiba, H.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A multi-Poisson structure on a Lie algebra g provides a systematic way to construct completely integrable Hamiltonian systems on g expressed in Lax form ∂Xλ/∂t=[Xλ,Aλ] in the sense of the isospectral deformation, where Xλ,Aλ∈g depend rationally on the indeterminate λ called the spectral parameter. In this paper, a method for modifying the isospectral deformation equation to the Lax equation ∂Xλ/∂t=[Xλ,Aλ]+∂Aλ/∂λ in the sense of the isomonodromic deformation, which exhibits the Painlevé property, is proposed. This method gives a few new Painlevé systems of dimension four.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148562
citation_txt Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT chibah multipoissonapproachtothepainleveequationsfromtheisospectraldeformationtotheisomonodromicdeformation
first_indexed 2025-12-07T17:57:29Z
last_indexed 2025-12-07T17:57:29Z
_version_ 1850873216263782400