Lagrangian Mechanics and Reduction on Fibered Manifolds

This paper develops a generalized formulation of Lagrangian mechanics on fibered manifolds, together with a reduction theory for symmetries corresponding to Lie groupoid actions. As special cases, this theory includes not only Lagrangian reduction (including reduction by stages) for Lie group action...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2017
Автори: Li, S., Stern, A., Tang, X.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148564
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Lagrangian Mechanics and Reduction on Fibered Manifolds / S. Li, A. Stern, X. Tang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 34 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This paper develops a generalized formulation of Lagrangian mechanics on fibered manifolds, together with a reduction theory for symmetries corresponding to Lie groupoid actions. As special cases, this theory includes not only Lagrangian reduction (including reduction by stages) for Lie group actions, but also classical Routh reduction, which we show is naturally posed in this fibered setting. Along the way, we also develop some new results for Lagrangian mechanics on Lie algebroids, most notably a new, coordinate-free formulation of the equations of motion. Finally, we extend the foregoing to include fibered and Lie algebroid generalizations of the Hamilton-Pontryagin principle of Yoshimura and Marsden, along with the associated reduction theory.
ISSN:1815-0659