Symmetries of the Hirota Difference Equation

Continuous symmetries of the Hirota difference equation, commuting with shifts of independent variables, are derived by means of the dressing procedure. Action of these symmetries on the dependent variables of the equation is presented. Commutativity of these symmetries enables interpretation of the...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2017
Автор: Pogrebkov, A.K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148569
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symmetries of the Hirota Difference Equation / A.K. Pogrebkov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148569
record_format dspace
spelling Pogrebkov, A.K.
2019-02-18T15:59:00Z
2019-02-18T15:59:00Z
2017
Symmetries of the Hirota Difference Equation / A.K. Pogrebkov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35Q51; 37K10; 37K15; 37K40; 39A14
DOI:10.3842/SIGMA.2017.053
https://nasplib.isofts.kiev.ua/handle/123456789/148569
Continuous symmetries of the Hirota difference equation, commuting with shifts of independent variables, are derived by means of the dressing procedure. Action of these symmetries on the dependent variables of the equation is presented. Commutativity of these symmetries enables interpretation of their parameters as ''times'' of the nonlinear integrable partial differential-difference and differential equations. Examples of equations resulting in such procedure and their Lax pairs are given. Besides these, ordinary, symmetries the additional ones are introduced and their action on the Scattering data is presented.
This work has been funded by the Russian Academic Excellence Project ‘5-100’.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Symmetries of the Hirota Difference Equation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Symmetries of the Hirota Difference Equation
spellingShingle Symmetries of the Hirota Difference Equation
Pogrebkov, A.K.
title_short Symmetries of the Hirota Difference Equation
title_full Symmetries of the Hirota Difference Equation
title_fullStr Symmetries of the Hirota Difference Equation
title_full_unstemmed Symmetries of the Hirota Difference Equation
title_sort symmetries of the hirota difference equation
author Pogrebkov, A.K.
author_facet Pogrebkov, A.K.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Continuous symmetries of the Hirota difference equation, commuting with shifts of independent variables, are derived by means of the dressing procedure. Action of these symmetries on the dependent variables of the equation is presented. Commutativity of these symmetries enables interpretation of their parameters as ''times'' of the nonlinear integrable partial differential-difference and differential equations. Examples of equations resulting in such procedure and their Lax pairs are given. Besides these, ordinary, symmetries the additional ones are introduced and their action on the Scattering data is presented.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148569
citation_txt Symmetries of the Hirota Difference Equation / A.K. Pogrebkov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT pogrebkovak symmetriesofthehirotadifferenceequation
first_indexed 2025-12-01T23:49:48Z
last_indexed 2025-12-01T23:49:48Z
_version_ 1850861180107620352