Symmetries of the Hirota Difference Equation
Continuous symmetries of the Hirota difference equation, commuting with shifts of independent variables, are derived by means of the dressing procedure. Action of these symmetries on the dependent variables of the equation is presented. Commutativity of these symmetries enables interpretation of the...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2017 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/148569 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Symmetries of the Hirota Difference Equation / A.K. Pogrebkov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148569 |
|---|---|
| record_format |
dspace |
| spelling |
Pogrebkov, A.K. 2019-02-18T15:59:00Z 2019-02-18T15:59:00Z 2017 Symmetries of the Hirota Difference Equation / A.K. Pogrebkov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35Q51; 37K10; 37K15; 37K40; 39A14 DOI:10.3842/SIGMA.2017.053 https://nasplib.isofts.kiev.ua/handle/123456789/148569 Continuous symmetries of the Hirota difference equation, commuting with shifts of independent variables, are derived by means of the dressing procedure. Action of these symmetries on the dependent variables of the equation is presented. Commutativity of these symmetries enables interpretation of their parameters as ''times'' of the nonlinear integrable partial differential-difference and differential equations. Examples of equations resulting in such procedure and their Lax pairs are given. Besides these, ordinary, symmetries the additional ones are introduced and their action on the Scattering data is presented. This work has been funded by the Russian Academic Excellence Project ‘5-100’. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Symmetries of the Hirota Difference Equation Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Symmetries of the Hirota Difference Equation |
| spellingShingle |
Symmetries of the Hirota Difference Equation Pogrebkov, A.K. |
| title_short |
Symmetries of the Hirota Difference Equation |
| title_full |
Symmetries of the Hirota Difference Equation |
| title_fullStr |
Symmetries of the Hirota Difference Equation |
| title_full_unstemmed |
Symmetries of the Hirota Difference Equation |
| title_sort |
symmetries of the hirota difference equation |
| author |
Pogrebkov, A.K. |
| author_facet |
Pogrebkov, A.K. |
| publishDate |
2017 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Continuous symmetries of the Hirota difference equation, commuting with shifts of independent variables, are derived by means of the dressing procedure. Action of these symmetries on the dependent variables of the equation is presented. Commutativity of these symmetries enables interpretation of their parameters as ''times'' of the nonlinear integrable partial differential-difference and differential equations. Examples of equations resulting in such procedure and their Lax pairs are given. Besides these, ordinary, symmetries the additional ones are introduced and their action on the Scattering data is presented.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148569 |
| citation_txt |
Symmetries of the Hirota Difference Equation / A.K. Pogrebkov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ. |
| work_keys_str_mv |
AT pogrebkovak symmetriesofthehirotadifferenceequation |
| first_indexed |
2025-12-01T23:49:48Z |
| last_indexed |
2025-12-01T23:49:48Z |
| _version_ |
1850861180107620352 |