Another Approach to Juhl's Conformally Covariant Differential Operators from Sⁿ to Sⁿ⁻¹
A family (Dλ)λ∈C of differential operators on the sphere Sⁿ is constructed. The operators are conformally covariant for the action of the subgroup of conformal transformations of Sⁿ which preserve the smaller sphere Sⁿ⁻¹ ⊂Sⁿ. The family of conformally covariant differential operators from Sⁿ to Sⁿ⁻¹...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2017 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/148574 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Another Approach to Juhl's Conformally Covariant Differential Operators from Sⁿ to Sⁿ⁻¹ / Jean-Louis Clerc // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | A family (Dλ)λ∈C of differential operators on the sphere Sⁿ is constructed. The operators are conformally covariant for the action of the subgroup of conformal transformations of Sⁿ which preserve the smaller sphere Sⁿ⁻¹ ⊂Sⁿ. The family of conformally covariant differential operators from Sⁿ to Sⁿ⁻¹ introduced by A. Juhl is obtained by composing these operators on Sⁿ and taking restrictions to Sⁿ⁻¹ .
|
|---|---|
| ISSN: | 1815-0659 |