A Combinatorial Study on Quiver Varieties
This is an expository paper which has two parts. In the first part, we study quiver varieties of affine A-type from a combinatorial point of view. We present a combinatorial method for obtaining a closed formula for the generating function of Poincaré polynomials of quiver varieties in rank 1 cases....
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2017 |
| Hauptverfasser: | Fujii, S., Minabe, S. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2017
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/148584 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | A Combinatorial Study on Quiver Varieties / S. Fujii, S. Minabe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 58 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Quiver Varieties and Branching
von: Nakajima, H.
Veröffentlicht: (2009) -
Nakajima quiver varieties, affine crystals and combinatorics of Auslander-Reiten quivers
von: Kus, D., et al.
Veröffentlicht: (2023) -
Nakajima quiver varieties, affine crystals and combinatorics of Auslander-Reiten quivers
von: Kus, D., et al.
Veröffentlicht: (2023) -
Vector bundles on projective varieties and representations of quivers
von: M. Jardim, et al.
Veröffentlicht: (2015) -
Vector bundles on projective varieties and representations of quivers
von: Jardim, M., et al.
Veröffentlicht: (2015)