G-Invariant Deformations of Almost-Coupling Poisson Structures

On a foliated manifold equipped with an action of a compact Lie group G, we study a class of almost-coupling Poisson and Dirac structures, in the context of deformation theory and the method of averaging.

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2017
Main Authors: Vallejo, J.A., Vorobiev, Y.
Format: Article
Language:English
Published: Інститут математики НАН України 2017
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148597
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:G-Invariant Deformations of Almost-Coupling Poisson Structures / J.A. Vallejo, Y. Vorobiev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148597
record_format dspace
spelling Vallejo, J.A.
Vorobiev, Y.
2019-02-18T16:27:11Z
2019-02-18T16:27:11Z
2017
G-Invariant Deformations of Almost-Coupling Poisson Structures / J.A. Vallejo, Y. Vorobiev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53D17; 70G45; 58H15
DOI:10.3842/SIGMA.2014.021
https://nasplib.isofts.kiev.ua/handle/123456789/148597
On a foliated manifold equipped with an action of a compact Lie group G, we study a class of almost-coupling Poisson and Dirac structures, in the context of deformation theory and the method of averaging.
We express our gratitude to the anonymous referees, whose detailed comments and criticism have greatly improved the contents of this paper. Also, we thank the organizers of the Gone Fishing Meeting at Berkeley (2015), for the opportunity of presenting and discussing some of the results exposed here. This work was partially supported by the Mexican National Council of Science and Technology (CONACyT), under research projects CB-2012-179115 (JAV) and CB-2013-219631 (YuV).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
G-Invariant Deformations of Almost-Coupling Poisson Structures
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title G-Invariant Deformations of Almost-Coupling Poisson Structures
spellingShingle G-Invariant Deformations of Almost-Coupling Poisson Structures
Vallejo, J.A.
Vorobiev, Y.
title_short G-Invariant Deformations of Almost-Coupling Poisson Structures
title_full G-Invariant Deformations of Almost-Coupling Poisson Structures
title_fullStr G-Invariant Deformations of Almost-Coupling Poisson Structures
title_full_unstemmed G-Invariant Deformations of Almost-Coupling Poisson Structures
title_sort g-invariant deformations of almost-coupling poisson structures
author Vallejo, J.A.
Vorobiev, Y.
author_facet Vallejo, J.A.
Vorobiev, Y.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description On a foliated manifold equipped with an action of a compact Lie group G, we study a class of almost-coupling Poisson and Dirac structures, in the context of deformation theory and the method of averaging.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148597
citation_txt G-Invariant Deformations of Almost-Coupling Poisson Structures / J.A. Vallejo, Y. Vorobiev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT vallejoja ginvariantdeformationsofalmostcouplingpoissonstructures
AT vorobievy ginvariantdeformationsofalmostcouplingpoissonstructures
first_indexed 2025-12-07T16:29:56Z
last_indexed 2025-12-07T16:29:56Z
_version_ 1850867708529213440