On Toric Poisson Structures of Type (1,1) and their Cohomology
We classify real Poisson structures on complex toric manifolds of type (1,1) and initiate an investigation of their Poisson cohomology. For smooth toric varieties, such structures are necessarily algebraic and are homogeneous quadratic in each of the distinguished holomorphic coordinate charts deter...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2017 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/148600 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On Toric Poisson Structures of Type (1,1) and their Cohomology / A. Caine, B.N. Givens // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We classify real Poisson structures on complex toric manifolds of type (1,1) and initiate an investigation of their Poisson cohomology. For smooth toric varieties, such structures are necessarily algebraic and are homogeneous quadratic in each of the distinguished holomorphic coordinate charts determined by the open cones of the associated simplicial fan. As an approximation to the smooth cohomology problem in each Cn chart, we consider the Poisson differential on the complex of polynomial multi-vector fields. For the algebraic problem, we compute H⁰ and H¹ under the assumption that the Poisson structure is generically non-degenerate. The paper concludes with numerical investigations of the higher degree cohomology groups of (C²,πB) for various B.
|
|---|---|
| ISSN: | 1815-0659 |