On the Equivalence of Module Categories over a Group-Theoretical Fusion Category
We give a necessary and sufficient condition in terms of group cohomology for two indecomposable module categories over a group-theoretical fusion category C to be equivalent. This concludes the classification of such module categories.
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2017 |
| Main Author: | Natale, S. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2017
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/148642 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On the Equivalence of Module Categories over a Group-Theoretical Fusion Category / S. Natale // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Existence of the Category DTC₂(K) Equivalent to the Given Category KAC₂
by: Han, S.-E.
Published: (2015) -
Radical functors in the category of modules over different rings
by: Burban, Natalia, et al.
Published: (2018) -
Radical functors in the category of modules over different rings
by: Burban, Natalia, et al.
Published: (2018) -
Radical functors in the category of modules over different rings
by: Burban, N., et al.
Published: (2008) -
Existence of the Category DTC_2 (K) Equivalent to the Given Category KAC_2
by: M. S. Khan
Published: (2015)