Integrable Structure of Multispecies Zero Range Process

We present a brief review on integrability of multispecies zero range process in one dimension introduced recently. The topics range over stochastic R matrices of quantum affine algebra Uq(An⁽¹⁾), matrix product construction of stationary states for periodic systems, q-boson representation of Zamolo...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2017
Main Authors: Kuniba, A., Okado, M., Watanabe, S.
Format: Article
Language:English
Published: Інститут математики НАН України 2017
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148647
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Integrable Structure of Multispecies Zero Range Process / A. Kuniba, M. Okado, S. Watanabe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148647
record_format dspace
spelling Kuniba, A.
Okado, M.
Watanabe, S.
2019-02-18T16:54:15Z
2019-02-18T16:54:15Z
2017
Integrable Structure of Multispecies Zero Range Process / A. Kuniba, M. Okado, S. Watanabe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 81R50; 60C9
DOI:10.3842/SIGMA.2017.044
https://nasplib.isofts.kiev.ua/handle/123456789/148647
We present a brief review on integrability of multispecies zero range process in one dimension introduced recently. The topics range over stochastic R matrices of quantum affine algebra Uq(An⁽¹⁾), matrix product construction of stationary states for periodic systems, q-boson representation of Zamolodchikov-Faddeev algebra, etc. We also introduce new commuting Markov transfer matrices having a mixed boundary condition and prove the factorization of a family of R matrices associated with the tetrahedron equation and generalized quantum groups at a special point of the spectral parameter.
This paper is a contribution to the Special Issue on Recent Advances in Quantum Integrable Systems. The full collection is available at http://www.emis.de/journals/SIGMA/RAQIS2016.html. The authors thank Ivan Corwin, Philippe Di Francesco, Alexandr Garbali, Michio Jimbo and Tomohiro Sasamoto for kind interest. They also thank Jef frey Kuan for informing them of the interesting work [27] and Shohei Machida for letting them know the Serre relations of UA( ). Last but not least we thank the anonymous referees for productive suggestions to improve the paper. This work is supported by Grants-in-Aid for Scientific Research No. 15K04892, No. 15K13429 and No. 16H03922 from JSPS.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Integrable Structure of Multispecies Zero Range Process
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Integrable Structure of Multispecies Zero Range Process
spellingShingle Integrable Structure of Multispecies Zero Range Process
Kuniba, A.
Okado, M.
Watanabe, S.
title_short Integrable Structure of Multispecies Zero Range Process
title_full Integrable Structure of Multispecies Zero Range Process
title_fullStr Integrable Structure of Multispecies Zero Range Process
title_full_unstemmed Integrable Structure of Multispecies Zero Range Process
title_sort integrable structure of multispecies zero range process
author Kuniba, A.
Okado, M.
Watanabe, S.
author_facet Kuniba, A.
Okado, M.
Watanabe, S.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We present a brief review on integrability of multispecies zero range process in one dimension introduced recently. The topics range over stochastic R matrices of quantum affine algebra Uq(An⁽¹⁾), matrix product construction of stationary states for periodic systems, q-boson representation of Zamolodchikov-Faddeev algebra, etc. We also introduce new commuting Markov transfer matrices having a mixed boundary condition and prove the factorization of a family of R matrices associated with the tetrahedron equation and generalized quantum groups at a special point of the spectral parameter.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148647
citation_txt Integrable Structure of Multispecies Zero Range Process / A. Kuniba, M. Okado, S. Watanabe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ.
work_keys_str_mv AT kunibaa integrablestructureofmultispecieszerorangeprocess
AT okadom integrablestructureofmultispecieszerorangeprocess
AT watanabes integrablestructureofmultispecieszerorangeprocess
first_indexed 2025-11-29T00:22:17Z
last_indexed 2025-11-29T00:22:17Z
_version_ 1850854294774874112