Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables

Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton-Jacobi, Helmholtz and time-independent Schröd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2012
Hauptverfasser: Broadbridge, P., Chanu, C.M., Miller Jr., Willard
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148652
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables / P. Broadbridge, C.M. Chanu, Willard Miller Jr. // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 36 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148652
record_format dspace
spelling Broadbridge, P.
Chanu, C.M.
Miller Jr., Willard
2019-02-18T17:33:50Z
2019-02-18T17:33:50Z
2012
Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables / P. Broadbridge, C.M. Chanu, Willard Miller Jr. // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 36 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35Q40; 35J05
DOI: http://dx.doi.org/10.3842/SIGMA.2012.089
https://nasplib.isofts.kiev.ua/handle/123456789/148652
Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton-Jacobi, Helmholtz and time-independent Schrödinger equations with potential on N-dimensional Riemannian and pseudo-Riemannian manifolds, but with a linear side condition, where more structure is available. We show that the requirement of N−1 commuting second-order symmetry operators, modulo a second-order linear side condition corresponds to nonregular separation of variables in an orthogonal coordinate system, characterized by a generalized Stäckel matrix. The coordinates and solutions obtainable through true nonregular separation are distinct from those arising through regular separation of variables. We develop the theory for these systems and provide examples.
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html. This work was partially supported by a grant from the Simons Foundation (#208754 to Willard Miller, Jr.) and by the Australian Research Council (grant DP1095044 to G.E. Prince and P. Broadbridge).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
spellingShingle Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
Broadbridge, P.
Chanu, C.M.
Miller Jr., Willard
title_short Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
title_full Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
title_fullStr Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
title_full_unstemmed Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
title_sort solutions of helmholtz and schrödinger equations with side condition and nonregular separation of variables
author Broadbridge, P.
Chanu, C.M.
Miller Jr., Willard
author_facet Broadbridge, P.
Chanu, C.M.
Miller Jr., Willard
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton-Jacobi, Helmholtz and time-independent Schrödinger equations with potential on N-dimensional Riemannian and pseudo-Riemannian manifolds, but with a linear side condition, where more structure is available. We show that the requirement of N−1 commuting second-order symmetry operators, modulo a second-order linear side condition corresponds to nonregular separation of variables in an orthogonal coordinate system, characterized by a generalized Stäckel matrix. The coordinates and solutions obtainable through true nonregular separation are distinct from those arising through regular separation of variables. We develop the theory for these systems and provide examples.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148652
citation_txt Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables / P. Broadbridge, C.M. Chanu, Willard Miller Jr. // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 36 назв. — англ.
work_keys_str_mv AT broadbridgep solutionsofhelmholtzandschrodingerequationswithsideconditionandnonregularseparationofvariables
AT chanucm solutionsofhelmholtzandschrodingerequationswithsideconditionandnonregularseparationofvariables
AT millerjrwillard solutionsofhelmholtzandschrodingerequationswithsideconditionandnonregularseparationofvariables
first_indexed 2025-12-07T16:00:09Z
last_indexed 2025-12-07T16:00:09Z
_version_ 1850865834298179584