Frobenius 3-Folds via Singular Flat 3-Webs
We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) th...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2012 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2012
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/148653 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148653 |
|---|---|
| record_format |
dspace |
| spelling |
Agafonov, S.I. 2019-02-18T17:34:30Z 2019-02-18T17:34:30Z 2012 Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ. 1815-0659 DOI: http://dx.doi.org/10.3842/SIGMA.2012.078 2010 Mathematics Subject Classification: 53A60; 53D45; 34M35 https://nasplib.isofts.kiev.ua/handle/123456789/148653 We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) the Chern connection form is holomorphic, 3) the curvature form vanishes identically. This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. This research was partially supported by MCT/CNPq/MEC/CAPES – Grant 552758/2011-6. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Frobenius 3-Folds via Singular Flat 3-Webs Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Frobenius 3-Folds via Singular Flat 3-Webs |
| spellingShingle |
Frobenius 3-Folds via Singular Flat 3-Webs Agafonov, S.I. |
| title_short |
Frobenius 3-Folds via Singular Flat 3-Webs |
| title_full |
Frobenius 3-Folds via Singular Flat 3-Webs |
| title_fullStr |
Frobenius 3-Folds via Singular Flat 3-Webs |
| title_full_unstemmed |
Frobenius 3-Folds via Singular Flat 3-Webs |
| title_sort |
frobenius 3-folds via singular flat 3-webs |
| author |
Agafonov, S.I. |
| author_facet |
Agafonov, S.I. |
| publishDate |
2012 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) the Chern connection form is holomorphic, 3) the curvature form vanishes identically.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148653 |
| citation_txt |
Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT agafonovsi frobenius3foldsviasingularflat3webs |
| first_indexed |
2025-12-07T19:29:29Z |
| last_indexed |
2025-12-07T19:29:29Z |
| _version_ |
1850879004706340864 |