Frobenius 3-Folds via Singular Flat 3-Webs

We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) th...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2012
Main Author: Agafonov, S.I.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148653
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148653
record_format dspace
spelling Agafonov, S.I.
2019-02-18T17:34:30Z
2019-02-18T17:34:30Z
2012
Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ.
1815-0659
DOI: http://dx.doi.org/10.3842/SIGMA.2012.078
2010 Mathematics Subject Classification: 53A60; 53D45; 34M35
https://nasplib.isofts.kiev.ua/handle/123456789/148653
We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) the Chern connection form is holomorphic, 3) the curvature form vanishes identically.
This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. This research was partially supported by MCT/CNPq/MEC/CAPES – Grant 552758/2011-6.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Frobenius 3-Folds via Singular Flat 3-Webs
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Frobenius 3-Folds via Singular Flat 3-Webs
spellingShingle Frobenius 3-Folds via Singular Flat 3-Webs
Agafonov, S.I.
title_short Frobenius 3-Folds via Singular Flat 3-Webs
title_full Frobenius 3-Folds via Singular Flat 3-Webs
title_fullStr Frobenius 3-Folds via Singular Flat 3-Webs
title_full_unstemmed Frobenius 3-Folds via Singular Flat 3-Webs
title_sort frobenius 3-folds via singular flat 3-webs
author Agafonov, S.I.
author_facet Agafonov, S.I.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) the Chern connection form is holomorphic, 3) the curvature form vanishes identically.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148653
citation_txt Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT agafonovsi frobenius3foldsviasingularflat3webs
first_indexed 2025-12-07T19:29:29Z
last_indexed 2025-12-07T19:29:29Z
_version_ 1850879004706340864