Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry

We study the entanglement properties of a higher-integer-spin Affleck-Kennedy-Lieb-Tasaki model with quantum group symmetry in the periodic boundary condition. We exactly calculate the finite size correction terms of the entanglement entropies from the double scaling limit. We also evaluate the geom...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2012
Main Authors: Arita, C., Motegi, K.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148659
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry / C. Arita, K. Motegi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 41 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148659
record_format dspace
spelling Arita, C.
Motegi, K.
2019-02-18T17:38:54Z
2019-02-18T17:38:54Z
2012
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry / C. Arita, K. Motegi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 41 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B37; 81V70; 82B23
DOI: http://dx.doi.org/10.3842/SIGMA.2012.081
https://nasplib.isofts.kiev.ua/handle/123456789/148659
We study the entanglement properties of a higher-integer-spin Affleck-Kennedy-Lieb-Tasaki model with quantum group symmetry in the periodic boundary condition. We exactly calculate the finite size correction terms of the entanglement entropies from the double scaling limit. We also evaluate the geometric entanglement, which serves as another measure for entanglement. We find the geometric entanglement reaches its maximum at the isotropic point, and decreases with the increase of the anisotropy. This behavior is similar to that of the entanglement entropies.
C. Arita is a JSPS Fellow for Research Abroad
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
spellingShingle Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
Arita, C.
Motegi, K.
title_short Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
title_full Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
title_fullStr Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
title_full_unstemmed Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
title_sort entanglement properties of a higher-integer-spin aklt model with quantum group symmetry
author Arita, C.
Motegi, K.
author_facet Arita, C.
Motegi, K.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study the entanglement properties of a higher-integer-spin Affleck-Kennedy-Lieb-Tasaki model with quantum group symmetry in the periodic boundary condition. We exactly calculate the finite size correction terms of the entanglement entropies from the double scaling limit. We also evaluate the geometric entanglement, which serves as another measure for entanglement. We find the geometric entanglement reaches its maximum at the isotropic point, and decreases with the increase of the anisotropy. This behavior is similar to that of the entanglement entropies.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148659
citation_txt Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry / C. Arita, K. Motegi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 41 назв. — англ.
work_keys_str_mv AT aritac entanglementpropertiesofahigherintegerspinakltmodelwithquantumgroupsymmetry
AT motegik entanglementpropertiesofahigherintegerspinakltmodelwithquantumgroupsymmetry
first_indexed 2025-12-07T17:40:27Z
last_indexed 2025-12-07T17:40:27Z
_version_ 1850872144451338240