Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
We study the entanglement properties of a higher-integer-spin Affleck-Kennedy-Lieb-Tasaki model with quantum group symmetry in the periodic boundary condition. We exactly calculate the finite size correction terms of the entanglement entropies from the double scaling limit. We also evaluate the geom...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2012 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2012
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/148659 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry / C. Arita, K. Motegi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 41 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148659 |
|---|---|
| record_format |
dspace |
| spelling |
Arita, C. Motegi, K. 2019-02-18T17:38:54Z 2019-02-18T17:38:54Z 2012 Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry / C. Arita, K. Motegi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 41 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 81V70; 82B23 DOI: http://dx.doi.org/10.3842/SIGMA.2012.081 https://nasplib.isofts.kiev.ua/handle/123456789/148659 We study the entanglement properties of a higher-integer-spin Affleck-Kennedy-Lieb-Tasaki model with quantum group symmetry in the periodic boundary condition. We exactly calculate the finite size correction terms of the entanglement entropies from the double scaling limit. We also evaluate the geometric entanglement, which serves as another measure for entanglement. We find the geometric entanglement reaches its maximum at the isotropic point, and decreases with the increase of the anisotropy. This behavior is similar to that of the entanglement entropies. C. Arita is a JSPS Fellow for Research Abroad en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry |
| spellingShingle |
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry Arita, C. Motegi, K. |
| title_short |
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry |
| title_full |
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry |
| title_fullStr |
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry |
| title_full_unstemmed |
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry |
| title_sort |
entanglement properties of a higher-integer-spin aklt model with quantum group symmetry |
| author |
Arita, C. Motegi, K. |
| author_facet |
Arita, C. Motegi, K. |
| publishDate |
2012 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We study the entanglement properties of a higher-integer-spin Affleck-Kennedy-Lieb-Tasaki model with quantum group symmetry in the periodic boundary condition. We exactly calculate the finite size correction terms of the entanglement entropies from the double scaling limit. We also evaluate the geometric entanglement, which serves as another measure for entanglement. We find the geometric entanglement reaches its maximum at the isotropic point, and decreases with the increase of the anisotropy. This behavior is similar to that of the entanglement entropies.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148659 |
| citation_txt |
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry / C. Arita, K. Motegi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 41 назв. — англ. |
| work_keys_str_mv |
AT aritac entanglementpropertiesofahigherintegerspinakltmodelwithquantumgroupsymmetry AT motegik entanglementpropertiesofahigherintegerspinakltmodelwithquantumgroupsymmetry |
| first_indexed |
2025-12-07T17:40:27Z |
| last_indexed |
2025-12-07T17:40:27Z |
| _version_ |
1850872144451338240 |