The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)

We present the complete classification of equations of the form uxy=f(u,ux,uy) and the Klein-Gordon equations vxy=F(v) connected with one another by differential substitutions v=φ(u,ux,uy) such that φuxφuy≠0 over the ring of complex-valued variables.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2012
Hauptverfasser: Kuznetsova, M.N., Pekcan, A., Zhiber, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148676
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) / M.N. Kuznetsova, A. Pekcan, A.V. Zhiber // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148676
record_format dspace
spelling Kuznetsova, M.N.
Pekcan, A.
Zhiber, A.V.
2019-02-18T17:48:22Z
2019-02-18T17:48:22Z
2012
The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) / M.N. Kuznetsova, A. Pekcan, A.V. Zhiber // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35L70
DOI: http://dx.doi.org/10.3842/SIGMA.2012.090
https://nasplib.isofts.kiev.ua/handle/123456789/148676
We present the complete classification of equations of the form uxy=f(u,ux,uy) and the Klein-Gordon equations vxy=F(v) connected with one another by differential substitutions v=φ(u,ux,uy) such that φuxφuy≠0 over the ring of complex-valued variables.
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html. This work is partially supported by the Russian Foundation for Basic Research (RFBR) (Grants 11-01-97005-Povolj’ie-a, 12-01-31208 mol-a).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
spellingShingle The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
Kuznetsova, M.N.
Pekcan, A.
Zhiber, A.V.
title_short The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
title_full The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
title_fullStr The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
title_full_unstemmed The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
title_sort klein-gordon equation and differential substitutions of the form v=φ(u,ux,uy)
author Kuznetsova, M.N.
Pekcan, A.
Zhiber, A.V.
author_facet Kuznetsova, M.N.
Pekcan, A.
Zhiber, A.V.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We present the complete classification of equations of the form uxy=f(u,ux,uy) and the Klein-Gordon equations vxy=F(v) connected with one another by differential substitutions v=φ(u,ux,uy) such that φuxφuy≠0 over the ring of complex-valued variables.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148676
citation_txt The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) / M.N. Kuznetsova, A. Pekcan, A.V. Zhiber // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT kuznetsovamn thekleingordonequationanddifferentialsubstitutionsoftheformvφuuxuy
AT pekcana thekleingordonequationanddifferentialsubstitutionsoftheformvφuuxuy
AT zhiberav thekleingordonequationanddifferentialsubstitutionsoftheformvφuuxuy
AT kuznetsovamn kleingordonequationanddifferentialsubstitutionsoftheformvφuuxuy
AT pekcana kleingordonequationanddifferentialsubstitutionsoftheformvφuuxuy
AT zhiberav kleingordonequationanddifferentialsubstitutionsoftheformvφuuxuy
first_indexed 2025-12-07T15:37:28Z
last_indexed 2025-12-07T15:37:28Z
_version_ 1850864407342481408