Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions

We consider the recursion operator approach to the soliton equations related to the generalized Zakharov-Shabat system on the algebra sl(n,C) in pole gauge both in the general position and in the presence of reductions. We present the recursion operators and discuss their geometric meaning as conjug...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2012
Автори: Yanovski, A.B., Vilasi, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148684
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions / A.B. Yanovski, G. Vilasi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148684
record_format dspace
spelling Yanovski, A.B.
Vilasi, G.
2019-02-18T17:53:45Z
2019-02-18T17:53:45Z
2012
Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions / A.B. Yanovski, G. Vilasi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 37 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35Q51; 37K05; 37K10
DOI: http://dx.doi.org/10.3842/SIGMA.2012.087
https://nasplib.isofts.kiev.ua/handle/123456789/148684
We consider the recursion operator approach to the soliton equations related to the generalized Zakharov-Shabat system on the algebra sl(n,C) in pole gauge both in the general position and in the presence of reductions. We present the recursion operators and discuss their geometric meaning as conjugate to Nijenhuis tensors for a Poisson-Nijenhuis structure defined on the manifold of potentials.
The authors are grateful to A.V. Mikhailov and V.S. Gerdjikov for drawing their attention to the theory of the recursion operators in the presence of reductions and the problems related to it. We would like also to thank the referees who read carefully the manuscript and make number of remarks that helped to improve considerably the manuscript.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions
spellingShingle Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions
Yanovski, A.B.
Vilasi, G.
title_short Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions
title_full Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions
title_fullStr Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions
title_full_unstemmed Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions
title_sort geometric theory of the recursion operators for the generalized zakharov-shabat system in pole gauge on the algebra sl(n,c) with and without reductions
author Yanovski, A.B.
Vilasi, G.
author_facet Yanovski, A.B.
Vilasi, G.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider the recursion operator approach to the soliton equations related to the generalized Zakharov-Shabat system on the algebra sl(n,C) in pole gauge both in the general position and in the presence of reductions. We present the recursion operators and discuss their geometric meaning as conjugate to Nijenhuis tensors for a Poisson-Nijenhuis structure defined on the manifold of potentials.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148684
citation_txt Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions / A.B. Yanovski, G. Vilasi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 37 назв. — англ.
work_keys_str_mv AT yanovskiab geometrictheoryoftherecursionoperatorsforthegeneralizedzakharovshabatsysteminpolegaugeonthealgebraslncwithandwithoutreductions
AT vilasig geometrictheoryoftherecursionoperatorsforthegeneralizedzakharovshabatsysteminpolegaugeonthealgebraslncwithandwithoutreductions
first_indexed 2025-12-02T09:49:41Z
last_indexed 2025-12-02T09:49:41Z
_version_ 1850862208065470464