On Affine Fusion and the Phase Model

A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n) Wess-Zumino-Novikov-Witten (WZNW) conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2012
1. Verfasser: Walton, M.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148697
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On Affine Fusion and the Phase Model / M.A. Walton // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n) Wess-Zumino-Novikov-Witten (WZNW) conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n) WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n) fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.
ISSN:1815-0659