On Affine Fusion and the Phase Model

A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n) Wess-Zumino-Novikov-Witten (WZNW) conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2012
Автор: Walton, M.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148697
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Affine Fusion and the Phase Model / M.A. Walton // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148697
record_format dspace
spelling Walton, M.A.
2019-02-18T17:56:45Z
2019-02-18T17:56:45Z
2012
On Affine Fusion and the Phase Model / M.A. Walton // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 81T40; 81R10; 81R12; 17B37; 17B81; 05E05
DOI: http://dx.doi.org/10.3842/SIGMA.2012.086
https://nasplib.isofts.kiev.ua/handle/123456789/148697
A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n) Wess-Zumino-Novikov-Witten (WZNW) conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n) WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n) fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.
This paper is a contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”. The full collection is available at http://www.emis.de/journals/SIGMA/SESSF2012.html. I thank Elaine Beltaos, Terry Gannon, Ali Nassar and Andrew Urichuk for discussions and/or reading the manuscript. This research was supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On Affine Fusion and the Phase Model
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On Affine Fusion and the Phase Model
spellingShingle On Affine Fusion and the Phase Model
Walton, M.A.
title_short On Affine Fusion and the Phase Model
title_full On Affine Fusion and the Phase Model
title_fullStr On Affine Fusion and the Phase Model
title_full_unstemmed On Affine Fusion and the Phase Model
title_sort on affine fusion and the phase model
author Walton, M.A.
author_facet Walton, M.A.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n) Wess-Zumino-Novikov-Witten (WZNW) conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n) WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n) fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148697
citation_txt On Affine Fusion and the Phase Model / M.A. Walton // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT waltonma onaffinefusionandthephasemodel
first_indexed 2025-12-07T15:26:03Z
last_indexed 2025-12-07T15:26:03Z
_version_ 1850863688667365376