Ladder Operators for Lamé Spheroconal Harmonic Polynomials

Three sets of ladder operators in spheroconal coordinates and their respective actions on Lamé spheroconal harmonic polynomials are presented in this article. The polynomials are common eigenfunctions of the square of the angular momentum operator and of the asymmetry distribution Hamiltonian for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2012
Hauptverfasser: Méndez-Fragoso, R., Ley-Koo, E.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148705
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Ladder Operators for Lamé Spheroconal Harmonic Polynomials / R. Méndez-Fragoso, E. Ley-Koo // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 35 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Three sets of ladder operators in spheroconal coordinates and their respective actions on Lamé spheroconal harmonic polynomials are presented in this article. The polynomials are common eigenfunctions of the square of the angular momentum operator and of the asymmetry distribution Hamiltonian for the rotations of asymmetric molecules, in the body-fixed frame with principal axes. The first set of operators for Lamé polynomials of a given species and a fixed value of the square of the angular momentum raise and lower and lower and raise in complementary ways the quantum numbers n₁ and n₂ counting the respective nodal elliptical cones. The second set of operators consisting of the cartesian components Ĺx, Ĺy, Ĺz of the angular momentum connect pairs of the four species of polynomials of a chosen kind and angular momentum. The third set of operators, the cartesian components px, py, pz of the linear momentum, connect pairs of the polynomials differing in one unit in their angular momentum and in their parities. Relationships among spheroconal harmonics at the levels of the three sets of operators are illustrated.
ISSN:1815-0659