Recursion Operators and Frobenius Manifolds

In this note I exhibit a ''discrete homotopy'' which joins the category of F-manifolds to the category of Poisson-Nijenhuis manifolds, passing through the category of Frobenius manifolds.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2012
1. Verfasser: Magri, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148723
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Recursion Operators and Frobenius Manifolds / F. Magri // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148723
record_format dspace
spelling Magri, F.
2019-02-18T18:11:01Z
2019-02-18T18:11:01Z
2012
Recursion Operators and Frobenius Manifolds / F. Magri // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 4 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35D45; 53D17; 37K10
DOI: http://dx.doi.org/10.3842/SIGMA.2012.076
https://nasplib.isofts.kiev.ua/handle/123456789/148723
In this note I exhibit a ''discrete homotopy'' which joins the category of F-manifolds to the category of Poisson-Nijenhuis manifolds, passing through the category of Frobenius manifolds.
This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. This note is a first account of a lasting research work done in collaboration with B. Konopelchenko. To him I address my warm acknowledgements for the permission to use part of the common work to prepare the conference and this note. Many thanks are also due to B. Dubrovin for the kind invitation to attend the conference on Geometrical Methods in Mathematical Physics.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Recursion Operators and Frobenius Manifolds
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Recursion Operators and Frobenius Manifolds
spellingShingle Recursion Operators and Frobenius Manifolds
Magri, F.
title_short Recursion Operators and Frobenius Manifolds
title_full Recursion Operators and Frobenius Manifolds
title_fullStr Recursion Operators and Frobenius Manifolds
title_full_unstemmed Recursion Operators and Frobenius Manifolds
title_sort recursion operators and frobenius manifolds
author Magri, F.
author_facet Magri, F.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this note I exhibit a ''discrete homotopy'' which joins the category of F-manifolds to the category of Poisson-Nijenhuis manifolds, passing through the category of Frobenius manifolds.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148723
fulltext
citation_txt Recursion Operators and Frobenius Manifolds / F. Magri // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT magrif recursionoperatorsandfrobeniusmanifolds
first_indexed 2025-11-25T20:49:30Z
last_indexed 2025-11-25T20:49:30Z
_version_ 1850538897790992384