Definite Integrals using Orthogonality and Integral Transforms

We obtain definite integrals for products of associated Legendre functions with Bessel functions, associated Legendre functions, and Chebyshev polynomials of the first kind using orthogonality and integral transforms.

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2012
Main Authors: Cohl, H.S., Volkmer, H.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148725
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Definite Integrals using Orthogonality and Integral Transforms / H.S. Cohl, H. Volkmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148725
record_format dspace
spelling Cohl, H.S.
Volkmer, H.
2019-02-18T18:11:33Z
2019-02-18T18:11:33Z
2012
Definite Integrals using Orthogonality and Integral Transforms / H.S. Cohl, H. Volkmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 15 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 26A42; 33C05; 33C10; 33C45; 35A08
DOI: http://dx.doi.org/10.3842/SIGMA.2012.077
https://nasplib.isofts.kiev.ua/handle/123456789/148725
We obtain definite integrals for products of associated Legendre functions with Bessel functions, associated Legendre functions, and Chebyshev polynomials of the first kind using orthogonality and integral transforms.
This paper is a contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”. The full collection is available at http://www.emis.de/journals/SIGMA/SESSF2012.html. This work was conducted while H.S. Cohl was a National Research Council Research Postdoctoral Associate in the Information Technology Laboratory at the National Institute of Standards and Technology, Gaithersburg, Maryland, USA. The authors would also like to acknowledge two anonymous referees whose comments helped improve this paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Definite Integrals using Orthogonality and Integral Transforms
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Definite Integrals using Orthogonality and Integral Transforms
spellingShingle Definite Integrals using Orthogonality and Integral Transforms
Cohl, H.S.
Volkmer, H.
title_short Definite Integrals using Orthogonality and Integral Transforms
title_full Definite Integrals using Orthogonality and Integral Transforms
title_fullStr Definite Integrals using Orthogonality and Integral Transforms
title_full_unstemmed Definite Integrals using Orthogonality and Integral Transforms
title_sort definite integrals using orthogonality and integral transforms
author Cohl, H.S.
Volkmer, H.
author_facet Cohl, H.S.
Volkmer, H.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We obtain definite integrals for products of associated Legendre functions with Bessel functions, associated Legendre functions, and Chebyshev polynomials of the first kind using orthogonality and integral transforms.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148725
citation_txt Definite Integrals using Orthogonality and Integral Transforms / H.S. Cohl, H. Volkmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT cohlhs definiteintegralsusingorthogonalityandintegraltransforms
AT volkmerh definiteintegralsusingorthogonalityandintegraltransforms
first_indexed 2025-11-27T18:46:37Z
last_indexed 2025-11-27T18:46:37Z
_version_ 1850852661881995264