An Elliptic Garnier System from Interpolation

Considering a certain interpolation problem, we derive a series of elliptic difference isomonodromic systems together with their Lax forms. These systems give a multivariate extension of the elliptic Painlevé equation.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2017
1. Verfasser: Yamada, Y.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148749
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:An Elliptic Garnier System from Interpolation / Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148749
record_format dspace
spelling Yamada, Y.
2019-02-18T18:24:31Z
2019-02-18T18:24:31Z
2017
An Elliptic Garnier System from Interpolation / Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 39A13; 33E05; 33E17; 41A05
DOI:10.3842/SIGMA.2017.069
https://nasplib.isofts.kiev.ua/handle/123456789/148749
Considering a certain interpolation problem, we derive a series of elliptic difference isomonodromic systems together with their Lax forms. These systems give a multivariate extension of the elliptic Painlevé equation.
This paper is a contribution to the Special Issue on Elliptic Hypergeometric Functions and Their Applications. The full collection is available at https://www.emis.de/journals/SIGMA/EHF2017.html. The author is grateful to the organizers and participants of the lecture series at the university of Sydney (November 28–30, 2016) and the ESI workshop “Elliptic Hypergeometric Functions in Combinatorics, Integrable Systems and Physics” (Vienna, March 20–24, 2017) for their interests and discussions. He also thanks to referees for valuable comments and Dr. H. Nagao for discussions. This work is partially supported by JSPS KAKENHI (26287018).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
An Elliptic Garnier System from Interpolation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title An Elliptic Garnier System from Interpolation
spellingShingle An Elliptic Garnier System from Interpolation
Yamada, Y.
title_short An Elliptic Garnier System from Interpolation
title_full An Elliptic Garnier System from Interpolation
title_fullStr An Elliptic Garnier System from Interpolation
title_full_unstemmed An Elliptic Garnier System from Interpolation
title_sort elliptic garnier system from interpolation
author Yamada, Y.
author_facet Yamada, Y.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Considering a certain interpolation problem, we derive a series of elliptic difference isomonodromic systems together with their Lax forms. These systems give a multivariate extension of the elliptic Painlevé equation.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148749
citation_txt An Elliptic Garnier System from Interpolation / Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT yamaday anellipticgarniersystemfrominterpolation
AT yamaday ellipticgarniersystemfrominterpolation
first_indexed 2025-12-07T18:58:16Z
last_indexed 2025-12-07T18:58:16Z
_version_ 1850877040857710592