An Elliptic Garnier System from Interpolation
Considering a certain interpolation problem, we derive a series of elliptic difference isomonodromic systems together with their Lax forms. These systems give a multivariate extension of the elliptic Painlevé equation.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2017 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2017
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/148749 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | An Elliptic Garnier System from Interpolation / Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148749 |
|---|---|
| record_format |
dspace |
| spelling |
Yamada, Y. 2019-02-18T18:24:31Z 2019-02-18T18:24:31Z 2017 An Elliptic Garnier System from Interpolation / Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 39A13; 33E05; 33E17; 41A05 DOI:10.3842/SIGMA.2017.069 https://nasplib.isofts.kiev.ua/handle/123456789/148749 Considering a certain interpolation problem, we derive a series of elliptic difference isomonodromic systems together with their Lax forms. These systems give a multivariate extension of the elliptic Painlevé equation. This paper is a contribution to the Special Issue on Elliptic Hypergeometric Functions and Their Applications. The full collection is available at https://www.emis.de/journals/SIGMA/EHF2017.html. The author is grateful to the organizers and participants of the lecture series at the university of Sydney (November 28–30, 2016) and the ESI workshop “Elliptic Hypergeometric Functions in Combinatorics, Integrable Systems and Physics” (Vienna, March 20–24, 2017) for their interests and discussions. He also thanks to referees for valuable comments and Dr. H. Nagao for discussions. This work is partially supported by JSPS KAKENHI (26287018). en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications An Elliptic Garnier System from Interpolation Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
An Elliptic Garnier System from Interpolation |
| spellingShingle |
An Elliptic Garnier System from Interpolation Yamada, Y. |
| title_short |
An Elliptic Garnier System from Interpolation |
| title_full |
An Elliptic Garnier System from Interpolation |
| title_fullStr |
An Elliptic Garnier System from Interpolation |
| title_full_unstemmed |
An Elliptic Garnier System from Interpolation |
| title_sort |
elliptic garnier system from interpolation |
| author |
Yamada, Y. |
| author_facet |
Yamada, Y. |
| publishDate |
2017 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Considering a certain interpolation problem, we derive a series of elliptic difference isomonodromic systems together with their Lax forms. These systems give a multivariate extension of the elliptic Painlevé equation.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148749 |
| citation_txt |
An Elliptic Garnier System from Interpolation / Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT yamaday anellipticgarniersystemfrominterpolation AT yamaday ellipticgarniersystemfrominterpolation |
| first_indexed |
2025-12-07T18:58:16Z |
| last_indexed |
2025-12-07T18:58:16Z |
| _version_ |
1850877040857710592 |