A Generalization of the Doubling Construction for Sums of Squares Identities

The doubling construction is a fast and important way to generate new solutions to the Hurwitz problem on sums of squares identities from any known ones. In this short note, we generalize the doubling construction and obtain from any given admissible triple [r,s,m] a series of new ones [r+ρ(2ⁿ⁻¹),2ⁿ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2017
Hauptverfasser: Zhang, C., Huang, H.L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148756
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Generalization of the Doubling Construction for Sums of Squares Identities / C. Zhang, H.L. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148756
record_format dspace
spelling Zhang, C.
Huang, H.L.
2019-02-18T18:29:31Z
2019-02-18T18:29:31Z
2017
A Generalization of the Doubling Construction for Sums of Squares Identities / C. Zhang, H.L. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 9 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 11E25
DOI:10.3842/SIGMA.2017.064
https://nasplib.isofts.kiev.ua/handle/123456789/148756
The doubling construction is a fast and important way to generate new solutions to the Hurwitz problem on sums of squares identities from any known ones. In this short note, we generalize the doubling construction and obtain from any given admissible triple [r,s,m] a series of new ones [r+ρ(2ⁿ⁻¹),2ⁿs,2ⁿm] for all positive integer n, where ρ is the Hurwitz-Radon function.
This research was supported by NSFC 11471186 and NSFC 11571199.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Generalization of the Doubling Construction for Sums of Squares Identities
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Generalization of the Doubling Construction for Sums of Squares Identities
spellingShingle A Generalization of the Doubling Construction for Sums of Squares Identities
Zhang, C.
Huang, H.L.
title_short A Generalization of the Doubling Construction for Sums of Squares Identities
title_full A Generalization of the Doubling Construction for Sums of Squares Identities
title_fullStr A Generalization of the Doubling Construction for Sums of Squares Identities
title_full_unstemmed A Generalization of the Doubling Construction for Sums of Squares Identities
title_sort generalization of the doubling construction for sums of squares identities
author Zhang, C.
Huang, H.L.
author_facet Zhang, C.
Huang, H.L.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The doubling construction is a fast and important way to generate new solutions to the Hurwitz problem on sums of squares identities from any known ones. In this short note, we generalize the doubling construction and obtain from any given admissible triple [r,s,m] a series of new ones [r+ρ(2ⁿ⁻¹),2ⁿs,2ⁿm] for all positive integer n, where ρ is the Hurwitz-Radon function.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148756
citation_txt A Generalization of the Doubling Construction for Sums of Squares Identities / C. Zhang, H.L. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT zhangc ageneralizationofthedoublingconstructionforsumsofsquaresidentities
AT huanghl ageneralizationofthedoublingconstructionforsumsofsquaresidentities
AT zhangc generalizationofthedoublingconstructionforsumsofsquaresidentities
AT huanghl generalizationofthedoublingconstructionforsumsofsquaresidentities
first_indexed 2025-12-07T20:54:11Z
last_indexed 2025-12-07T20:54:11Z
_version_ 1850884333398654976