Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians

In this paper we present a novel construction of non-homogeneous hydrodynamic equations from what we call quasi-Stäckel systems, that is non-commutatively integrable systems constructed from appropriate maximally superintegrable Stäckel systems. We describe the relations between Poisson algebras gen...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2017
Main Authors: Marciniak, K., Błaszak, M.
Format: Article
Language:English
Published: Інститут математики НАН України 2017
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148772
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians / K. Marciniak, M. Błaszak // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148772
record_format dspace
spelling Marciniak, K.
Błaszak, M.
2019-02-18T18:49:26Z
2019-02-18T18:49:26Z
2017
Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians / K. Marciniak, M. Błaszak // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 70H06; 70H20; 35F50; 53B20
DOI:10.3842/SIGMA.2017.077
https://nasplib.isofts.kiev.ua/handle/123456789/148772
In this paper we present a novel construction of non-homogeneous hydrodynamic equations from what we call quasi-Stäckel systems, that is non-commutatively integrable systems constructed from appropriate maximally superintegrable Stäckel systems. We describe the relations between Poisson algebras generated by quasi-Stäckel Hamiltonians and the corresponding Lie algebras of vector fields of non-homogeneous hydrodynamic systems. We also apply Stäckel transform to obtain new non-homogeneous equations of considered type.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians
spellingShingle Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians
Marciniak, K.
Błaszak, M.
title_short Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians
title_full Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians
title_fullStr Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians
title_full_unstemmed Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians
title_sort non-homogeneous hydrodynamic systems and quasi-stäckel hamiltonians
author Marciniak, K.
Błaszak, M.
author_facet Marciniak, K.
Błaszak, M.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this paper we present a novel construction of non-homogeneous hydrodynamic equations from what we call quasi-Stäckel systems, that is non-commutatively integrable systems constructed from appropriate maximally superintegrable Stäckel systems. We describe the relations between Poisson algebras generated by quasi-Stäckel Hamiltonians and the corresponding Lie algebras of vector fields of non-homogeneous hydrodynamic systems. We also apply Stäckel transform to obtain new non-homogeneous equations of considered type.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148772
citation_txt Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians / K. Marciniak, M. Błaszak // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT marciniakk nonhomogeneoushydrodynamicsystemsandquasistackelhamiltonians
AT błaszakm nonhomogeneoushydrodynamicsystemsandquasistackelhamiltonians
first_indexed 2025-12-07T21:03:37Z
last_indexed 2025-12-07T21:03:37Z
_version_ 1850884926953488384