On the Automorphisms of a Rank One Deligne-Hitchin Moduli Space

Let X be a compact connected Riemann surface of genus g≥2, and let MDH be the rank one Deligne-Hitchin moduli space associated to X. It is known that MDH is the twistor space for the hyper-Kähler structure on the moduli space of rank one holomorphic connections on X. We investigate the group Aut(MDH...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2017
Main Authors: Biswas, I., Heller, S.
Format: Article
Language:English
Published: Інститут математики НАН України 2017
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148776
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the Automorphisms of a Rank One Deligne-Hitchin Moduli Space / I. Biswas, S. Heller // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Let X be a compact connected Riemann surface of genus g≥2, and let MDH be the rank one Deligne-Hitchin moduli space associated to X. It is known that MDH is the twistor space for the hyper-Kähler structure on the moduli space of rank one holomorphic connections on X. We investigate the group Aut(MDH) of all holomorphic automorphisms of MDH. The connected component of Aut(MDH) containing the identity automorphism is computed. There is a natural element of H²(MDH,Z). We also compute the subgroup of Aut(MDH) that fixes this second cohomology class. Since MDH admits an ample rational curve, the notion of algebraic dimension extends to it by a theorem of Verbitsky. We prove that MDH is Moishezon.
ISSN:1815-0659