First results with collecting probes in U-2M torsatron
The results are presented on a postmortem analysis of the mirror-like SS samples and two glass samples exposed in the Uragan-2M (U-2M) vacuum chamber during experimental campaigns in 2015 and 2016 years. The examination of the samples, after their removal from the chamber, has revealed that all of t...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Series: | Вопросы атомной науки и техники |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/148853 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | First results with collecting probes in U-2M torsatron / V.S. Voitsenya, V.G. Konovalov, I.V. Ryzhkov, S.I. Solodovchenko, A.F. Shtan’,A.N. Shapoval, S.M. Maznichenko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 17-20. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148853 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1488532025-02-09T16:05:07Z First results with collecting probes in U-2M torsatron Перші результати щодо використання збираючих зондів у торсатроні U-2M Первые результаты по использованию собирающих зондов в торсатроне U-2M Voitsenya, V.S. Konovalov, V.G. Ryzhkov, I.V. Solodovchenko, S.I. Shtan’, A.F. Shapoval, A.N. Maznichenko, S.M. Магнитное удержание The results are presented on a postmortem analysis of the mirror-like SS samples and two glass samples exposed in the Uragan-2M (U-2M) vacuum chamber during experimental campaigns in 2015 and 2016 years. The examination of the samples, after their removal from the chamber, has revealed that all of them were coated with a carbon-containing film of thickness dependent on the sample position. All metal samples were easily cleaned by low energy ions of deuterium plasma, excluding the one located nearby the RF antenna, which was used for RF plasma production. Представленo результати аналізу поверхні зразків дзеркал з нержавіючої сталі і двох скляних зразків, експонованих у вакуумній камері установки Ураган-2М протягом двох експериментальних кампаній (2015 і 2016 рр.). Після вилучення зразків з вакуумної камери було виявлено, що всі вони покриті вуглецевмісною плівкою, товщина якої залежить від положення зразка. Всі металеві зразки були легко очищені від забруднюючого шару низькоенергетичними іонами дейтерієвої плазми, за винятком того, що розташовувався поблизу ВЧ-антени, яка використовувалася для створення плазми. Представлены результаты анализа поверхности образцов зеркал из нержавеющей стали и двух стеклянных образцов, экспонированных в вакуумной камере установки Ураган-2М в течение двух экспериментальных кампаний (2015 и 2016 гг.). После изъятия образцов из вакуумной камеры было обнаружено, что все они покрыты углеродсодержащей пленкой, толщина которой зависит от положения образца. Все металлические образцы были легко очищены от загрязняющего слоя низкоэнергетичными ионами дейтериевой плазмы, за исключением образца, располагавшегося вблизи ВЧ-антенны, которая использовалась для создания плазмы. 2018 Article First results with collecting probes in U-2M torsatron / V.S. Voitsenya, V.G. Konovalov, I.V. Ryzhkov, S.I. Solodovchenko, A.F. Shtan’,A.N. Shapoval, S.M. Maznichenko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 17-20. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.40.Hf; 52.55.Hc; 79.20.Rf https://nasplib.isofts.kiev.ua/handle/123456789/148853 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Магнитное удержание Магнитное удержание |
| spellingShingle |
Магнитное удержание Магнитное удержание Voitsenya, V.S. Konovalov, V.G. Ryzhkov, I.V. Solodovchenko, S.I. Shtan’, A.F. Shapoval, A.N. Maznichenko, S.M. First results with collecting probes in U-2M torsatron Вопросы атомной науки и техники |
| description |
The results are presented on a postmortem analysis of the mirror-like SS samples and two glass samples exposed in the Uragan-2M (U-2M) vacuum chamber during experimental campaigns in 2015 and 2016 years. The examination of the samples, after their removal from the chamber, has revealed that all of them were coated with a carbon-containing film of thickness dependent on the sample position. All metal samples were easily cleaned by low energy ions of deuterium plasma, excluding the one located nearby the RF antenna, which was used for RF plasma production. |
| format |
Article |
| author |
Voitsenya, V.S. Konovalov, V.G. Ryzhkov, I.V. Solodovchenko, S.I. Shtan’, A.F. Shapoval, A.N. Maznichenko, S.M. |
| author_facet |
Voitsenya, V.S. Konovalov, V.G. Ryzhkov, I.V. Solodovchenko, S.I. Shtan’, A.F. Shapoval, A.N. Maznichenko, S.M. |
| author_sort |
Voitsenya, V.S. |
| title |
First results with collecting probes in U-2M torsatron |
| title_short |
First results with collecting probes in U-2M torsatron |
| title_full |
First results with collecting probes in U-2M torsatron |
| title_fullStr |
First results with collecting probes in U-2M torsatron |
| title_full_unstemmed |
First results with collecting probes in U-2M torsatron |
| title_sort |
first results with collecting probes in u-2m torsatron |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2018 |
| topic_facet |
Магнитное удержание |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148853 |
| citation_txt |
First results with collecting probes in U-2M torsatron / V.S. Voitsenya, V.G. Konovalov, I.V. Ryzhkov, S.I. Solodovchenko, A.F. Shtan’,A.N. Shapoval, S.M. Maznichenko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 17-20. — Бібліогр.: 11 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT voitsenyavs firstresultswithcollectingprobesinu2mtorsatron AT konovalovvg firstresultswithcollectingprobesinu2mtorsatron AT ryzhkoviv firstresultswithcollectingprobesinu2mtorsatron AT solodovchenkosi firstresultswithcollectingprobesinu2mtorsatron AT shtanaf firstresultswithcollectingprobesinu2mtorsatron AT shapovalan firstresultswithcollectingprobesinu2mtorsatron AT maznichenkosm firstresultswithcollectingprobesinu2mtorsatron AT voitsenyavs peršírezulʹtatiŝodovikoristannâzbiraûčihzondívutorsatroníu2m AT konovalovvg peršírezulʹtatiŝodovikoristannâzbiraûčihzondívutorsatroníu2m AT ryzhkoviv peršírezulʹtatiŝodovikoristannâzbiraûčihzondívutorsatroníu2m AT solodovchenkosi peršírezulʹtatiŝodovikoristannâzbiraûčihzondívutorsatroníu2m AT shtanaf peršírezulʹtatiŝodovikoristannâzbiraûčihzondívutorsatroníu2m AT shapovalan peršírezulʹtatiŝodovikoristannâzbiraûčihzondívutorsatroníu2m AT maznichenkosm peršírezulʹtatiŝodovikoristannâzbiraûčihzondívutorsatroníu2m AT voitsenyavs pervyerezulʹtatypoispolʹzovaniûsobiraûŝihzondovvtorsatroneu2m AT konovalovvg pervyerezulʹtatypoispolʹzovaniûsobiraûŝihzondovvtorsatroneu2m AT ryzhkoviv pervyerezulʹtatypoispolʹzovaniûsobiraûŝihzondovvtorsatroneu2m AT solodovchenkosi pervyerezulʹtatypoispolʹzovaniûsobiraûŝihzondovvtorsatroneu2m AT shtanaf pervyerezulʹtatypoispolʹzovaniûsobiraûŝihzondovvtorsatroneu2m AT shapovalan pervyerezulʹtatypoispolʹzovaniûsobiraûŝihzondovvtorsatroneu2m AT maznichenkosm pervyerezulʹtatypoispolʹzovaniûsobiraûŝihzondovvtorsatroneu2m |
| first_indexed |
2025-11-27T18:46:45Z |
| last_indexed |
2025-11-27T18:46:45Z |
| _version_ |
1849970350243184640 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2018. №6(118)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 17-20. 17
FIRST RESULTS WITH COLLECTING PROBES IN U-2M TORSATRON
V.S. Voitsenya, V.G. Konovalov, I.V. Ryzhkov, S.I. Solodovchenko, A.F. Shtan’,
A.N. Shapoval, S.M. Maznichenko
National Science Center “Kharkov Institute of Physics and Technology”,
Institute of Plasma Physics, Kharkiv, Ukraine
E-mail: voitseny@ipp.kharkov.ua
The results are presented on a postmortem analysis of the mirror-like SS samples and two glass samples exposed in
the Uragan-2M (U-2M) vacuum chamber during experimental campaigns in 2015 and 2016 years. The examination of
the samples, after their removal from the chamber, has revealed that all of them were coated with a carbon-containing
film of thickness dependent on the sample position. All metal samples were easily cleaned by low energy ions of
deuterium plasma, excluding the one located nearby the RF antenna, which was used for RF plasma production.
PACS: 52.40.Hf; 52.55.Hc; 79.20.Rf
INTRODUCTION
In recent years, as can be concluded from publications
[1-4], much effort in experiments at the Uragan-2M
torsatron has been given to optimizing the procedure of
conditioning the inner vacuum-chamber walls through RF
power application. For obtaining information on
efficiency of wall cleaning, along with optical
spectroscopy of plasma and mass analysis of gas in the
course of the conditioning procedure, five stainless steel
(SS) mirror-like samples and a couple of glass samples
were installed in different poloidal cross sections. Their
optical properties were measured before and after they
were exposed in the U-2M vacuum chamber for
experimental campaigns in 2015 and 2016.
The spectroscopy of plasma during cleaning and
working plasma pulses, and the gas analyses testified that
the process of cleaning did occur [1-4]. However, after
dissembling the vacuum vessel it became clear that the
walls were cleaned only partly, and some part of the inner
wall surfaces remained black or of temper colors, as can
be seen in Fig. 1 of paper [5].
All test samples were found to be coated with the
deposit that decreased the reflectance (R) of SS samples
and the transparency (T) of glasses. The reflectance of all
SS samples was restored after exposing them in H or D
plasmas produced in the DSM-2 stand [6] under electron
cyclotron resonance conditions. The results for the R
restoration are presented in the third part of this paper.
The fourth part gives the discussion and conclusive
remarks.
1. EXPERIMENTAL DETAILS
1.1. THE U-2M DEVICE DESCRIPTION
The U-2M device is a toroidal magnetic trap with the
l=2 m=4 torsatron magnetic configuration produced by 16
toroidal and 2 helical coils. Besides, 4 pairs of coils are
used to compensate the vertical component of magnetic
field produced by helical coils. The major radius of the
vacuum chamber is R=1.7 m, and its minor radius is
rc=0.32 m. At the outer rim of the chamber there are 4
horizontal ports, 20 cm in diameter, which are used for
pumping (3 ports) and feeding the frame-type RF antenna.
In the same cross sections, but along the inner rim, the
ports with diameter 10 cm are located. One antenna was
located between coils 1 and 16, and the other – between
coils 2 and 3. Throughout the experiments, different
regimes of plasma creation and different magnetic
configurations were used for wall conditioning and for the
RF-produced working discharges.
1.2. WITNESS SAMPLES IN U-2M
During the years 2015 and 2016, five stainless steel
(SS) mirror samples and two glass samples were exposed
in different poloidal cross sections of the Uragan-2M
vacuum chamber. Before and after experiments, the
reflectance (R) of SS samples within the wavelengths of
220 to 650 nm at normal incidence, and the transmission
(T) of glass samples in the range 400 to 650 nm were
measured.
The positions of all samples are schematically shown
in Fig. 1.
Fig. 1. Top view of U-2M with locations of collecting
probes
mailto:voitseny@ipp.kharkov.ua
18 ISSN 1562-6016. ВАНТ. 2018. №6(118)
All samples, excluding one, were oriented horizontally
and placed at the ‘bottom’ of the vacuum chamber; and
one sample, installed in the port located at the inner torus
perimeter, was oriented vertically. After the samples were
taken out from the U-2M vacuum vessel, all of them
appeared coated with some deposit, what has resulted in
the reflectance degradation reduction. To clean the
samples, they were exposed to low energy ions of
hydrogen or deuterium plasma produced under electron
cyclotron resonance (ECR) conditions in the DCM-2
stand [6].
One SS sample (№ 1) was fixed between toroidal coils
2 and 3, in the nearest vicinity of the frame-type antenna
made of stainless steel (left photo of Fig. 1 in [5]). The
other SS sample (№ 2) was placed between coils 4 and 5
together with two glass samples. Half the surface of one
glass sample was protected from plasma by a thin SS foil.
Locations of other samples were between coils 6-7 (№ 3,
oriented vertically), 8-9 (№ 4), and 10-11 (№ 5).
2. EXPERIMENTAL RESULTS
After removal from the U-2M chamber, the samples
were exposed to low-temperature hydrogen or deuterium
plasma produced in the DCM-2 stand. During exposure,
the samples were fixed in a grounded holder, i.e., without
supplying negative potential for ion acceleration (Vacc=0).
After a short (20 min) treatment, all the SS samples,
except № 1, were found to be fully cleaned. As our
previous experience has shown, the ease of deposit
removal means that the film consists practically of pure
carbon. At the same time, the cleaning of sample №1 to
the stage of initial reflectance, has required much longer
exposures to D plasma ions: Vacc = 0 V – one hour,
Vacc=-60 V – one hour, Vacc=-300 V – one hour. A high
resistance to removal of the contaminating deposit on the
sample is an evident indication that the deposit contains
some portion of metallic component. Something like that
was observed for a similar sample exposed in the Large
Helical Device [7], when for effective cleaning of the
sample higher-voltage accelerating ions to the sample
surface were needed during the cleaning procedure in the
DSM-2 stand.
The results of exposure and cleaning of three samples
exposed between coils 2-3, 6-7, and 8-9 are presented in
Fig. 2. The plots for the other two samples (№ 3 and № 5)
are not shown as they are very much similar to those in
Fig. 2,c. Fig. 3 demonstrates the difference R between
the reflectances at =500 nm, measured when the exposed
samples were fully cleaned and just after they were
withdrawn from the U-2M chamber (with the deposition
that appeared during exposure in U-2M).
0
10
20
30
40
50
60
200 300 400 500 600 700
after U-2M
H cleaning after U-2M, 20'
H cleaning after U-2M, 3 hours
R
e
fl
e
c
ta
n
c
e
,
%
Wavelength, nm
coils 2-3
a
0
10
20
30
40
50
60
200 300 400 500 600 700
initial
after U-2M
H cleaning after U-2M
R
e
fl
e
c
ta
n
c
e
,
%
Wavelength, nm
coils 6-7
b
25
30
35
40
45
50
55
60
200 300 400 500 600 700
before U-2M
after U-2M
D cleaning after U-2M
R
e
fl
e
c
ta
n
c
e
,
%
Wavelength, nm
coils 8-9
c
Fig. 2. Drop and restoration of reflectance of three SS
samples exposed in locations as indicated in legends
0
5
10
15
20
25
30
35
1 3 5 7 9 11
R
a
t
=
5
0
0
n
m
,
%
Coil number
2 4 6 8 10 12
Fig. 3. Difference R between initial reflectance (i.e.,
fully cleaned samples) and reflectance just after samples
were withdrawn from the U-2M chamber
Fig. 4,a gives the photo of one of the glass samples
(exposed between coils 4 and 5) taken right after it was
withdrawn from the U-2M chamber. The figures in the
photo indicate: 1 – the SS foil, which partly protected the
ISSN 1562-6016. ВАНТ. 2018. №6(118) 19
glass sample; 2 – the part of sample that was protected by
the SS foil during exposure and, therefore, remained clean
and transparent; 3 – the part of glass sample that was open
to plasma and became coated by an almost fully opaque
deposit.
The exposure effect on the similar glass sample
exposed nearby in the U-2M and the results of its cleaning
by ions of Ar and D plasmas are presented in Fig. 4,b. The
first step of cleaning included four exposures: one in the Ar
plasma without ion accelerating potential (75 min) and
three – in the D plasma with a negative potential of -100 V
for acceleration of ions to the sample surface (total time
2 hours). In the second stage the ion energy was increased
up to 300 V (15 min). As is seen, these cleaning
procedures were insufficient for the recovery of
transmittance of the glass.
a
0
0.2
0.4
0.6
0.8
1
400 450 500 550 600 650
In
it
ia
l
tr
a
n
s
m
it
ta
n
c
e
Wavelength, nm b
Fig. 4. Photo of glass sample exposed in U-2M vacuum
chamber (a) and its transmittance (b): ■ – before
installation in U-2M vessel; ● – after exposure in
Uragan-2M; ♦ – first step of cleaning procedures;
▲ – second step of cleaning
3. DISCUSSION
The use of long time exposed samples with
postmortem analysis of their surface is a simple technique
that enables one to judge about effectiveness of an overall
conditioning of the vacuum chamber walls. In the case of
U-2M experiments, the research data of papers [1-5]
suggest that the cleaning process used previously has
affected only some part of the internal surfaces of the
vacuum volume. The other part remained to be coated
with a contaminating deposit, or on the contrary, became
coated in the course of conditioning procedures, as it
happened with SS and glass samples exposed during 2015
and 2016.
A high resistance to cleaning of the contaminating
deposit on the sample exposed in the nearest vicinity of
RF antenna is an evident indication that the layer
occurring on its surface contains some metal component,
though no analysis of the deposit was performed. This
conclusion can be made basing on the results obtained
when analyzing the results of exposure of similar SS
mirror samples in the Large Helical Device. In that case,
the necessity to apply higher voltage during long-time
cleaning (in DSM-2 with D plasma) of one of three
samples [7] was owing to ~40 % metal portion in the
composition of the deposit found on the sample exposed
in the divertor area. Those data were obtained by the
Rutherford backscattering (RBS) technique with the use
of a 1.5 MeV He+ ion beam.
The other facts in qualitative support of this
assumption can be found in paper [8] and Ph. D. Thesis
[9], where a detailed study of the effects of different metal
dopants on the carbon film resistance to sputtering by D
ions was presented. A noticeable decrease in the
sputtering rate of metal-doped carbon was observed as
early as at metal concentrations (Ti, V, Zr, W) of ~1 %
[9].
It is appropriate to note here that the data clearly
indicating that just the RF antenna is responsible for
‘sawing’ of the immediate surrounding with material of its
coating (TiN) were obtained long ago during experiments
at the Uragan-3 torsatron, when the RF antenna coated
with a TiN film was explored [10]. The Ti presence was
found in the deposited film only on those collecting
probes that were exposed in the nearest vicinity of the RF
antenna used for plasma production and heating.
CONCLUSIONS
The first data obtained with collecting probes support
the inference following from the analysis of the works
devoted to wall conditioning in the U-2M torsatron, and
cited in the Introduction. Namely, in spite the fact that the
process of wall cleaning is definitely taking place, not all
inner surfaces are involved in this process. Moreover, as
the collecting probe data show, there are some parts of the
wall where the opposite process, viz., the deposition of
contaminating layer takes place. The main component of
the deposited layer appeared on the probes exposed far
from RF antenna is carbon, but on the probe nearest to the
antenna the deposited layer is largely composed of metal.
The collecting-probe method is ‘passive’ and gives no
way to control in situ the process of wall cleaning.
Therefore, other methods to control the cleaning process
have to be used when performing wall conditioning in the
machine. One possibility to control the efficiency of
cleaning of the carbonized film predeposited on a metal
probe has been described and discussed in [11].
20 ISSN 1562-6016. ВАНТ. 2018. №6(118)
REFERENCES
1. D.I. Baron, V.Ya. Chernyshenko, V.B. Korovin, et al.
Measurements of wall conditioning rate at Uragan-2M //
Problems of Atomic Science and Technology. Series
“Plasma Physics”. 2013, № 1 (83), p. 21-23.
2. V.E. Moiseenko, A.V. Lozin, V.V. Chechkin, et al.
VHF discharges for wall conditioning at the Uragan-2M
torsatron // Nucl. Fusion. 2014, v. 54, p. 033009,
doi:10.1088/0029-5515/54/3/033009.
3. V.B. Кorovin, D.I. Baron, M.М. Kozulya, et al. RF wall
conditioning at the Uragan-2M with use of high vacuum
cryogenic trap // Problems of Atomic Science and
Technology. Series “Plasma Physics”. 2015, № 1 (21),
p. 53-55.
4. A.V. Lozin, V.E. Moiseenko, M.M. Kozulya, et al.
Baron and Uragan-2M Team. Continuous VHF discharge
wall conditioning without magnetic field in a toroidal
device // Problems of Atomic Science and Technology.
Series “Plasma Physics”. 2016, № 6, (22), p. 60-63.
5. V.E. Moiseenko, O.V. Lozin, A.M. Shapoval, et al.
Progress in stellarator research at IPP-Kharkov //
Nukleonika. 2016, v. 61, p. 91-97, doi: 10.1515/nuka-
2016-0016 (in Russian).
6. D.V. Orlinski, V.S. Voitsenya, and K.Yu. Vukolov.
First mirrors for diagnostic systems of an experimental
fusion reactor I. Simulation mirror tests under neutron and
ion bombardment // Plasma Devices and Operations.
2007, v. 15, № 1, p. 33-75.
7. V.S. Voitsenya, A. Sagara, A.I. Belyaeva, et al. Effect
of exposure inside the LHD vessel on optical properties of
stainless steel mirrors // Plasma Devices Ops. 2005, v. 31,
p. 291-300, https://doi.org/10.1080/10519990500280891.
8. P. Starke, C. Adelhelm, and M. Balden. Erosion
Behaviour of Metal-Doped Carbon Layers in Deuterium
Low Pressure Plasmas and the Determination by Optical
Emission Spectroscopy // Contrib. Plasma Phys.2007,
v. 47, p. 530-536, doi 10.1002/ctpp.200710068.
9. Christoph Adelhelm. Structure and Erosion Behavior of
Metal-doped Carbon Films // Ph. D. Thesis. October 2008.
http://mediatum.ub.tum.de/doc/645118/document.pdf.
10. V.V. Vasil’ev, V.S. Voitsenya, Yu.G. Mashkarov,
V.D. Sarena. Investigation of metal impurities in plasma
condensates of the Uragan-3 installation using
backscattering and X-ray fluorescence analysis //
Proceedings of the All-Union Conference “Microanalysis
on ion beams”, October 1988, Kharkov, Ukraine.
11. V.S. Voitsenya, V.G. Konovalov, I.V. Ryzhkov,
S.I. Solodovchenko, A.F. Shtan’, A.N. Shapoval,
A.I. Timoshenko. Cleaning of metallic mirrors from
carbon-containing films by hydrogen plasma: new
possibilities for in situ monitoring // The Proceedings of
this Conference.
Article received 15.10.2018
ПЕРВЫЕ РЕЗУЛЬТАТЫ ПО ИСПОЛЬЗОВАНИЮ СОБИРАЮЩИХ ЗОНДОВ В ТОРСАТРОНЕ U-2M
В.С. Войценя, В.Г. Коновалов, И.В. Рыжков, С.И. Солодовченко, А.Ф. Штань, А.Н. Шаповал,
С.М. Мазниченко
Представлены результаты анализа поверхности образцов зеркал из нержавеющей стали и двух стеклянных
образцов, экспонированных в вакуумной камере установки Ураган-2М в течение двух экспериментальных
кампаний (2015 и 2016 гг.). После изъятия образцов из вакуумной камеры было обнаружено, что все они
покрыты углеродсодержащей пленкой, толщина которой зависит от положения образца. Все металлические
образцы были легко очищены от загрязняющего слоя низкоэнергетичными ионами дейтериевой плазмы, за
исключением образца, располагавшегося вблизи ВЧ-антенны, которая использовалась для создания плазмы.
ПЕРШІ РЕЗУЛЬТАТИ ЩОДО ВИКОРИСТАННЯ ЗБИРАЮЧИХ ЗОНДІВ У ТОРСАТРОНІ U-2M
В.С. Войценя, В.Г. Коновалов, І.В. Рижков, С.І. Солодовченко, А.Ф. Штань, А.М. Шаповал,
С.М. Мазніченко
Представленo результати аналізу поверхні зразків дзеркал з нержавіючої сталі і двох скляних зразків,
експонованих у вакуумній камері установки Ураган-2М протягом двох експериментальних кампаній (2015 і
2016 рр.). Після вилучення зразків з вакуумної камери було виявлено, що всі вони покриті вуглецевмісною
плівкою, товщина якої залежить від положення зразка. Всі металеві зразки були легко очищені від
забруднюючого шару низькоенергетичними іонами дейтерієвої плазми, за винятком того, що розташовувався
поблизу ВЧ-антени, яка використовувалася для створення плазми.
https://doi.org/10.1080/10519990500280891
|