Features of surface modification of copper-based alloys under powerful plasma exposures
Paper presents features of plasma alloying of Cu-based materials with Ti-Cr, Ti-Cr-Ti-Nb, Ti-Cr-Ti-Zr, Ti-Cr-TiZrO coatings in different regimes of the QSPA Kh-50. Targets were made from copper samples covered of multilayer PVD coatings have been deposited within a Bulat-type facility. Prepared tar...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Series: | Вопросы атомной науки и техники |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/148861 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Features of surface modification of copper-based alloys under powerful plasma exposures / O. Byrka, N. Aksenov, A. Chunadra, L. Fomina, S. Herashchenko, V. Makhlai, S. Malykhin, K. Sereda, S. Surovitskiy, I. Garkusha // Вопросы атомной науки и техники. — 2018. — № 6. — С. 143-146. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148861 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1488612025-02-09T20:50:53Z Features of surface modification of copper-based alloys under powerful plasma exposures Особливості модифікації поверхні сплавів на основі міді під дією потужного плазмового опромінення Особенности модификации поверхности сплавов на основе меди под воздействием мощного плазменного облучения Byrka, O. Aksenov, N. Chunadra, A. Fomina, L. Herashchenko, S. Makhlai, V. Malykhin, S. Sereda, K. Surovitskiy, S. Garkusha, I. Динамика плазмы и взаимодействие плазма-стенка Paper presents features of plasma alloying of Cu-based materials with Ti-Cr, Ti-Cr-Ti-Nb, Ti-Cr-Ti-Zr, Ti-Cr-TiZrO coatings in different regimes of the QSPA Kh-50. Targets were made from copper samples covered of multilayer PVD coatings have been deposited within a Bulat-type facility. Prepared targets were irradiated with powerful plasma streams with energy loads achieved 0.6 MJ/m2 and the pulse duration of 0.25 ms. Influence of plasma impacts on modification different copper alloys has been analyzed. Mechanisms of modification of thin multilayered coatings mixed with Сu substrate in a liquid phase under the plasma processing are evaluated. Описано особливості плазмового легування матеріалів на основі міді з покриттями Ti-Cr, Ti-Cr-Ti-Nb, TiCr-Ti-Zr, Ti-Cr-Ti-ZrO в різних режимах КСПП Х-50. Проаналізовано вплив плазмових навантажень на модифікацію різних мідних сплавів. Зразки було виготовлено з міді та багатошарових покриттів, які утворювались PVD-методом в установці булатного типу. Підготовлені мішені опромінювалися потужними плазмовими потоками з енергетичними навантаженнями, що досягали 0,6 МДж/м 2 , з тривалістю імпульсу ~ 0,25 мс. Обговорюються механізми модифікації тонких багатошарових покриттів, змішаних з мідною підкладкою в рідкій фазі при плазмовому опроміненні. Описаны особенности плазменного легирования материалов на медной основе с покрытиями Ti-Cr, Ti-CrTi-Nb, Ti-Cr-Ti-Zr, Ti-Cr-Ti-ZrO в разных режимах КСПУ Х-50. Проанализировано влияние плазменных нагрузок на модификацию разных медных сплавов. Образцы были изготовлены из меди и многослойных покрытий, осажденных PVD-методом в установке булатного типа. Подготовленные мишени облучались мощными плазменными потоками с энергетическими нагрузками, достигавшими 0,6 МДж/м2 , с длительностью импульса ~ 0,25 мс. Обсуждаются механизмы модификации тонких многослойных покрытий, смешанных с медной подложкой в жидкой фазе при плазменном облучении. 2018 Article Features of surface modification of copper-based alloys under powerful plasma exposures / O. Byrka, N. Aksenov, A. Chunadra, L. Fomina, S. Herashchenko, V. Makhlai, S. Malykhin, K. Sereda, S. Surovitskiy, I. Garkusha // Вопросы атомной науки и техники. — 2018. — № 6. — С. 143-146. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 52.40.Hf https://nasplib.isofts.kiev.ua/handle/123456789/148861 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Динамика плазмы и взаимодействие плазма-стенка Динамика плазмы и взаимодействие плазма-стенка |
| spellingShingle |
Динамика плазмы и взаимодействие плазма-стенка Динамика плазмы и взаимодействие плазма-стенка Byrka, O. Aksenov, N. Chunadra, A. Fomina, L. Herashchenko, S. Makhlai, V. Malykhin, S. Sereda, K. Surovitskiy, S. Garkusha, I. Features of surface modification of copper-based alloys under powerful plasma exposures Вопросы атомной науки и техники |
| description |
Paper presents features of plasma alloying of Cu-based materials with Ti-Cr, Ti-Cr-Ti-Nb, Ti-Cr-Ti-Zr, Ti-Cr-TiZrO coatings in different regimes of the QSPA Kh-50. Targets were made from copper samples covered of
multilayer PVD coatings have been deposited within a Bulat-type facility. Prepared targets were irradiated with
powerful plasma streams with energy loads achieved 0.6 MJ/m2
and the pulse duration of 0.25 ms. Influence of
plasma impacts on modification different copper alloys has been analyzed. Mechanisms of modification of thin
multilayered coatings mixed with Сu substrate in a liquid phase under the plasma processing are evaluated. |
| format |
Article |
| author |
Byrka, O. Aksenov, N. Chunadra, A. Fomina, L. Herashchenko, S. Makhlai, V. Malykhin, S. Sereda, K. Surovitskiy, S. Garkusha, I. |
| author_facet |
Byrka, O. Aksenov, N. Chunadra, A. Fomina, L. Herashchenko, S. Makhlai, V. Malykhin, S. Sereda, K. Surovitskiy, S. Garkusha, I. |
| author_sort |
Byrka, O. |
| title |
Features of surface modification of copper-based alloys under powerful plasma exposures |
| title_short |
Features of surface modification of copper-based alloys under powerful plasma exposures |
| title_full |
Features of surface modification of copper-based alloys under powerful plasma exposures |
| title_fullStr |
Features of surface modification of copper-based alloys under powerful plasma exposures |
| title_full_unstemmed |
Features of surface modification of copper-based alloys under powerful plasma exposures |
| title_sort |
features of surface modification of copper-based alloys under powerful plasma exposures |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2018 |
| topic_facet |
Динамика плазмы и взаимодействие плазма-стенка |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148861 |
| citation_txt |
Features of surface modification of copper-based alloys under powerful plasma exposures / O. Byrka, N. Aksenov, A. Chunadra, L. Fomina, S. Herashchenko, V. Makhlai, S. Malykhin, K. Sereda, S. Surovitskiy, I. Garkusha // Вопросы атомной науки и техники. — 2018. — № 6. — С. 143-146. — Бібліогр.: 12 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT byrkao featuresofsurfacemodificationofcopperbasedalloysunderpowerfulplasmaexposures AT aksenovn featuresofsurfacemodificationofcopperbasedalloysunderpowerfulplasmaexposures AT chunadraa featuresofsurfacemodificationofcopperbasedalloysunderpowerfulplasmaexposures AT fominal featuresofsurfacemodificationofcopperbasedalloysunderpowerfulplasmaexposures AT herashchenkos featuresofsurfacemodificationofcopperbasedalloysunderpowerfulplasmaexposures AT makhlaiv featuresofsurfacemodificationofcopperbasedalloysunderpowerfulplasmaexposures AT malykhins featuresofsurfacemodificationofcopperbasedalloysunderpowerfulplasmaexposures AT seredak featuresofsurfacemodificationofcopperbasedalloysunderpowerfulplasmaexposures AT surovitskiys featuresofsurfacemodificationofcopperbasedalloysunderpowerfulplasmaexposures AT garkushai featuresofsurfacemodificationofcopperbasedalloysunderpowerfulplasmaexposures AT byrkao osoblivostímodifíkacíípoverhnísplavívnaosnovímídípíddíêûpotužnogoplazmovogoopromínennâ AT aksenovn osoblivostímodifíkacíípoverhnísplavívnaosnovímídípíddíêûpotužnogoplazmovogoopromínennâ AT chunadraa osoblivostímodifíkacíípoverhnísplavívnaosnovímídípíddíêûpotužnogoplazmovogoopromínennâ AT fominal osoblivostímodifíkacíípoverhnísplavívnaosnovímídípíddíêûpotužnogoplazmovogoopromínennâ AT herashchenkos osoblivostímodifíkacíípoverhnísplavívnaosnovímídípíddíêûpotužnogoplazmovogoopromínennâ AT makhlaiv osoblivostímodifíkacíípoverhnísplavívnaosnovímídípíddíêûpotužnogoplazmovogoopromínennâ AT malykhins osoblivostímodifíkacíípoverhnísplavívnaosnovímídípíddíêûpotužnogoplazmovogoopromínennâ AT seredak osoblivostímodifíkacíípoverhnísplavívnaosnovímídípíddíêûpotužnogoplazmovogoopromínennâ AT surovitskiys osoblivostímodifíkacíípoverhnísplavívnaosnovímídípíddíêûpotužnogoplazmovogoopromínennâ AT garkushai osoblivostímodifíkacíípoverhnísplavívnaosnovímídípíddíêûpotužnogoplazmovogoopromínennâ AT byrkao osobennostimodifikaciipoverhnostisplavovnaosnovemedipodvozdeistviemmoŝnogoplazmennogooblučeniâ AT aksenovn osobennostimodifikaciipoverhnostisplavovnaosnovemedipodvozdeistviemmoŝnogoplazmennogooblučeniâ AT chunadraa osobennostimodifikaciipoverhnostisplavovnaosnovemedipodvozdeistviemmoŝnogoplazmennogooblučeniâ AT fominal osobennostimodifikaciipoverhnostisplavovnaosnovemedipodvozdeistviemmoŝnogoplazmennogooblučeniâ AT herashchenkos osobennostimodifikaciipoverhnostisplavovnaosnovemedipodvozdeistviemmoŝnogoplazmennogooblučeniâ AT makhlaiv osobennostimodifikaciipoverhnostisplavovnaosnovemedipodvozdeistviemmoŝnogoplazmennogooblučeniâ AT malykhins osobennostimodifikaciipoverhnostisplavovnaosnovemedipodvozdeistviemmoŝnogoplazmennogooblučeniâ AT seredak osobennostimodifikaciipoverhnostisplavovnaosnovemedipodvozdeistviemmoŝnogoplazmennogooblučeniâ AT surovitskiys osobennostimodifikaciipoverhnostisplavovnaosnovemedipodvozdeistviemmoŝnogoplazmennogooblučeniâ AT garkushai osobennostimodifikaciipoverhnostisplavovnaosnovemedipodvozdeistviemmoŝnogoplazmennogooblučeniâ |
| first_indexed |
2025-11-30T16:09:46Z |
| last_indexed |
2025-11-30T16:09:46Z |
| _version_ |
1850232264888156160 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2018. №6(118)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 143-146. 143
FEATURES OF SURFACE MODIFICATION OF COPPER-BASED
ALLOYS UNDER POWERFUL PLASMA EXPOSURES
O. Byrka1, N. Aksenov1, A. Chunadra2, L. Fomina3 , S. Herashchenko1, V. Makhlai1,2,3,
S. Malykhin3, K. Sereda2, S. Surovitskiy3, I. Garkusha1,2
1National Science Center “Kharkov Institute of Physics and Technology”,
Institute of Plasma Physics, Kharkiv, Ukraine;
2V.N. Karazin Kharkiv National University, Kharkіv, Ukraine;
3National Technical University “Kharkiv Polytechnical Institute”, Kharkiv, Ukraine
E-mail: byrka@kipt.kharkov.ua
Paper presents features of plasma alloying of Cu-based materials with Ti-Cr, Ti-Cr-Ti-Nb, Ti-Cr-Ti-Zr, Ti-Cr-Ti-
ZrO coatings in different regimes of the QSPA Kh-50. Targets were made from copper samples covered of
multilayer PVD coatings have been deposited within a Bulat-type facility. Prepared targets were irradiated with
powerful plasma streams with energy loads achieved 0.6 MJ/m2 and the pulse duration of 0.25 ms. Influence of
plasma impacts on modification different copper alloys has been analyzed. Mechanisms of modification of thin
multilayered coatings mixed with Сu substrate in a liquid phase under the plasma processing are evaluated.
PACS: 52.40.Hf
INTRODUCTION
Copper-based alloys are widely used in heat transfer
elements for electronics, nuclear fusion technology and
many other areas due to their excellent thermal
conductivity, strength and fatigue resistance. Such
alloys, e.g. Cu-Cr-Ti-Zr, could be used as basis to
construct heat sinks for first wall and divertor
components of ITER. The main benefit of using Cu-
base alloy as a heat sink material for high heat flux
applications lies in the fact that it offers unique
combination of desired properties, namely, excellent
thermal conductivity, strength at operation temperature,
ductility, toughness, water-tightness, and only moderate
activation. However, various changes of mechanical
properties could be driven in copper alloys under the
plasma exposures with extreme energy and particle
loads [1].
In spite of the extraordinary virtues the very harsh
conditions environment expected for the fusion reactors
(e.g. DEMO) will be highly challenging for Cu-base
alloy as heat sink material. For instance, the surface of
divertor of a DEMO reactor will be exposed to high heat
loads up to 20 MW/m² [2]. Given that the heat sink of a
divertor has to withstand both cyclic heat loads and
neutron irradiation, maintaining a heat conductivity and
sufficient mechanical stability is the paramount
requirement for heat sink material. In this context, there
is a concern whether a Cu-Cr-Ti-Zr alloy heat sink can
fulfill the structural design criteria formulated for
DEMO divertor targets. This question is primarily
related to the mechanical performance of Cu-Cr-Ti-Zr
alloy under irradiation.
However, the production of elements of the cooling
system of divertor from Cu-base alloy is rather
expensive. A thin layer on the surface of the heat sink
compound is more cost effective. This problem can be
solved with appropriate coatings. Although the coat
application method the most common method today, it
can suffers problems with insufficient adhesion of
coating. One of the prospective ways towards an
improvement of the material properties is the alloying
during the pulsed plasma processing (the mixing of
previously deposited thin (hcoat < hmelt) coatings of a
different pre-determined composition with the chosen
substrate in the course of its melting driven by powerful
plasma impacts).
The alloying of a surface layer in result of the
coating (Cr, Ti, Zr, Nb) and substrate (Cu) mixing
allows achieve a desirable chemical composition of the
processed surface layers [3-7]. Nevertheless, the
modification processes in plasma facing materials,
which can be induced by repetitive plasma impacts and
synergetic effects (caused by different factors) are still
not understood.
This paper presents experimental studies of the
alloying and modification of the pure copper with Ti-Cr,
Ti-Cr-Ti-Nb, Ti-Cr-Ti-Zr, Ti-Cr-Ti-ZrO coatings
admixture introduced by the plasma-induced mixing.
Accumulation and comparison data for different
materials types (coatings, alloys and etc.) might be a
basis for choosing the heat sink system material relevant
to ITER and DEMO.
1. EXPERIMENTAL DEVICE AND
DIAGNOSTICS
Surface modification by powerful pulsed plasma
streams were carried out within a quasi-stationary
plasma accelerator QSPA Kh-50 [8, 9]. The main
parameters of the QSPA hydrogen plasma streams were
as follows: ion impact energy was about 0.4…0.6 keV,
the maximum plasma pressure reached up to 0.32 MPa,
and the plasma stream diameter was about 18 cm. The
surface energy loads, as measured with a calorimeter,
amounted to 0.6 MJ/m2. The load pulse shape was
approximately triangular, and the pulse duration was
0.25 ms. The target surface before each plasma pulse
was maintained at the room temperature in reported
experiments.
mailto:byrka@kipt.kharkov.ua
144 ISSN 1562-6016. ВАНТ. 2018. №6(118)
Samples (10x10 mm and 3 mm in height) were made
from copper covered of multilayer coatings of about
thickness 3…4 µm (each layer – 1 µm). High quality Ti-
Cr, Ti-Cr-Ti-Nb, Ti-Cr-Ti-Zr, Ti-Cr-Ti-ZrO thin
multilayer coatings were created using PVD technique
[10] in a Bulat type facility. Parameters of arc discharge
are as follows: current of arc Iarc = 230 A and biasing
voltage of Ubias = 140 V. Before deposition of coatings,
ionic cleaning of the surface (etching duration 2 min,
Ubias = 1.5 kV and Iarc = 100 A) was applied. Ti was
used as a binder between the substrate and layers of
Cr/Zr/Nb.
Spectroscopy, piezodetectors, electric and magnetic
probes, and other diagnostics were applied for
measurements of plasma streams parameters. The
energy density in free plasma and the surface heat loads
were measured by means of the local calorimeters.
Observations of plasma interactions with the exposed
surfaces were performed with a high-speed 10-bit
CMOS pco.1200 s digital camera of the PCO AG type
(in the spectral range from 290 to 1100 nm, with an
exposure time ranging from 1 s to 1 s). The surface
analysis of the exposed samples was carried out with a
MMR-4 optical microscope, equipped with a CCD camera.
There were also performed measurements of weight
losses, as well as precise measurements of the surface
roughness with a Hommeltester T500.
X-ray diffraction (XRD) has been used to study
structure, sub- structure and stress state of targets. ϑ-2ϑ
scans were performed using a monochromatic Cu-Kα
radiation [11-13]. Computer processing of the
experimental diffraction patterns was performed using
the new profile 3.5 software package [12].
Comprehensive analysis of diffraction peaks intensity,
profiles, width (В), angular positions was applied to
evaluate texture, coherent scattering region size [12].
Changes of phase state on the surface were evaluated
from XRD spectrum analysis.
2. EXPERIMENTAL RESULTS
The cycle of copper alloying consisted of two stages.
During first stage the thin multilayer coatings was
deposited on the surface by PVD method. The surface
roughness is slightly increased after deposition of
coatings (Ra < 0.2 µm, Rmax ≈ 1.2 µm). At the second
stage the coated samples were processed with hydrogen
plasma streams in QSPA Kh-50 device.
Microscopy observations show that the morphology
of the thin multilayer coatings imitates the initial relief
of the substrate, and that the surface roughness almost
does not change (Fig. 1).
As a result of plasma irradiation modified surface
layer with essentially changed structure has been
formed in all types of coatings. Origination of a melt
layer does not accompanied by surface cracking.
Formation of melted and further re-solidified layer
cause observed changes of surface roughness after
plasma exposure (Fig. 2). The weight loss
measurements demonstrate negligible mass decrease
under plasma exposures (decreases less than 100 µg).
These mass losses are not caused by evaporation and
may be the result of selective sputtering during the
mixing of the coating with the bulk material. The
roughness of exposed surfaces increased up to Ra ≈
0.3 µm, Rmax ≈ 2.1 µm (Fig. 3). The delamination of
coatings was not observed.
Fig. 1. SEM images of Ti-Cr-Ti-Zr coatings (without
plasma exposure)
Fig. 2. SEM images of Ti-Cr-Ti-Zr coatings (irradiation
with heat load of 0.6 MJ/m2)
Fig. 3. Surface profile of Cu covered by Ti-Cr-Ti-Zr
after QSPA plasma exposed (heat load of 0.6 MJ/m2)
The typical XRD patterns of the different coatings
are presented in Figs. 4, 5. Characteristic reflection
peaks of materials of alloying additives and copper are
easily identified.
The copper lattice parameter was 0.36152 nm before
and after plasma irradiation (which is close reference
ISSN 1562-6016. ВАНТ. 2018. №6(118) 145
value). This indicates that alloying elements are not
present in the lattice in the form of a solid-solution.
However, phases CuCrO4, CuZrO4 are observed on the
XRD pattern. On diffraction pattern such phases were
not observed before to plasma irradiation. Therefore,
mixing of the coating materials with the copper
substrate occurred with plasma exposure. Since the
penetration depth of X-rays may exceed the modified
layer thickness and diffraction peaks intensity in the
studied range is almost extreme, the halo is not clearly
identified in X-ray spectra.
Fig. 4. Diffraction pattern of surface coated by Ti-Cr-
NbO and exposed to after 5 QSPA plasma pulses
of 0.6 MJ/m2
Fig. 5. Diffraction pattern of surface coated by Ti-Cr-Zr
and exposed to after 5 QSPA plasma pulses
of 0.6 MJ/m2
The concentrations of material of coatings have been
achieved several units wt% in surface layer up to 6 µm
(Tables 1 and 2). At the same time, significant changes
element content (wt %) are not observed before and
after the plasma loads.
The possible way to improve coatings mixing is
application of several cycles of plasma treatment. One
cycle consist of two stages: 1 – deposition of thinner
multilayer coating; 2 – the coated samples should be
processed with pulsed plasma.
Table 1
Element content (wt %) of Cu-Ti-Cr-Zr
Ti Cr Zr Cu
Initial 2.925 2.006 7.058 88.011
Exposed 8.546 2.1 7.032 82.321
Table 2
Element content (wt %) of Cu-Ti-Cr-NbO
Ti Cr Nb Cu
Initial 7.9 2.575 7.39 82.135
Exposed 8.497 2.784 7.468 81.252
CONCLUSIONS
Experimental studies of surface modification of
copper samples covered by different multilayer coatings
(Ti-Cr, Ti-Cr-Ti-Nb, Ti-Cr-Ti-Zr, Ti-Cr-Ti-ZrO) have
been performed with a quasi-stationary plasma
accelerator QSPA Kh-50. Plasma heat load on the
surface was about 0.6 MJ/m2.
Surface modification and copper alloying due to the
mixing of thin multilayer coatings with sample substrate
under powerful plasma exposures is investigated. The
surface morphology is developed mostly by melting and
re-solidification processes in the course of plasma
treatment. Delamination of coatings was not observed.
As a result of plasma irradiation modified surface layer
with essentially changed structure has been formed in
all types of coatings.
The weight loss measurements demonstrate
negligible mass decrease under plasma exposures (less
than 100 µg). The concentrations of material of coatings
have been achieved several percent by weight in surface
layer up to 6 µm.
Obtained results showed the favorable influence of
alloying additions (Cr-Zr, Cr-Nb) on behavior of Cu-
based materials under the high heat loads.
ACKNOWLEDGEMENTS
This work has been supported in part by the State
Fund for Fundamental Research of Ukraine (grant
F76/84-2018) and Targeted Program of NAS of Ukraine
on Plasma Physics.
REFERENCES
1. J.H.You et al. // Fusion Engineering and Design.
2016, v. 109-111, part B, p. 1598-1603.
2. R.P. Wenninger et al. // Nuclear Fusion. 2014, v. 54,
p. 114003.
3. V.I. Tereshin et al. // Reviev of Scientific
Instrumruments. 2002, v. 73, p. 831-833.
4. V.A. Makhlay et al. // European Physical Journal D.
2009, v. 54, p. 185-188.
5. V. Anishchik, et al. // Vacuum, 2003, v. 70, 269-274.
6. O. Byrka et al. // Acta Technica. 2011, v. 56, p. T362-
T372.
7. S.V. Bazdyreva et al. // Problems of Atomic Science
and Technology. Ser. “Plasma Physics”. 2015,
№ 1(95), p. 166-169.
8. I.E. Garkusha et al. // Journal of Nuclear Materials.
2009, v. 386-388, p. 127-131.
https://www.sciencedirect.com/science/article/pii/S0920379615303331#!
https://www.sciencedirect.com/journal/fusion-engineering-and-design
146 ISSN 1562-6016. ВАНТ. 2018. №6(118)
9. I.E. Garkusha et al. // Journal of Nuclear Materials.
2009, v. 390-391, p. 814-817.
10. V. Tereshin et al. // Vacuum. 2004, v. 73, p. 555-
560.
11. V.A. Makhlaj et al. // Physica Scripta. 2009,
v. T138, p. 014060.
12. S.V. Bazdyreva et al. // Problems of Atomic Science
and Technology. Ser. “Plasma Physics”. 2014, № 6
(94), p. 48-51.
13. M.A. Krivoglaz. Kiev: “Naukova dumka”, 1983,
p. 408 (in Ukrainian).
Article received 25.10.2018
ОСОБЕННОСТИ МОДИФИКАЦИИ ПОВЕРХНОСТИ СПЛАВОВ НА ОСНОВЕ МЕДИ
ПОД ВОЗДЕЙСТВИЕМ МОЩНОГО ПЛАЗМЕННОГО ОБЛУЧЕНИЯ
О. Бырка, Н. Аксенов, А. Чунадра, Л. Фомина, С. Геращенко, В. Махлай, С. Малыхин,
К. Середа, С. Сыровицкий, И. Гаркуша
Описаны особенности плазменного легирования материалов на медной основе с покрытиями Ti-Cr, Ti-Cr-
Ti-Nb, Ti-Cr-Ti-Zr, Ti-Cr-Ti-ZrO в разных режимах КСПУ Х-50. Проанализировано влияние плазменных
нагрузок на модификацию разных медных сплавов. Образцы были изготовлены из меди и многослойных
покрытий, осажденных PVD-методом в установке булатного типа. Подготовленные мишени облучались
мощными плазменными потоками с энергетическими нагрузками, достигавшими 0,6 МДж/м2 , с
длительностью импульса ~ 0,25 мс. Обсуждаются механизмы модификации тонких многослойных
покрытий, смешанных с медной подложкой в жидкой фазе при плазменном облучении.
ОСОБЛИВОСТІ МОДИФІКАЦІЇ ПОВЕРХНІ СПЛАВІВ НА ОСНОВІ МІДІ ПІД ДІЄЮ
ПОТУЖНОГО ПЛАЗМОВОГО ОПРОМІНЕННЯ
О. Бирка, М. Аксьонов, А. Чунадра, Л. Фоміна, С. Геращенко, В. Махлай, С. Малихін,
К. Середа, С. Сировицький, І. Гаркуша
Описано особливості плазмового легування матеріалів на основі міді з покриттями Ti-Cr, Ti-Cr-Ti-Nb, Ti-
Cr-Ti-Zr, Ti-Cr-Ti-ZrO в різних режимах КСПП Х-50. Проаналізовано вплив плазмових навантажень на
модифікацію різних мідних сплавів. Зразки було виготовлено з міді та багатошарових покриттів, які
утворювались PVD-методом в установці булатного типу. Підготовлені мішені опромінювалися потужними
плазмовими потоками з енергетичними навантаженнями, що досягали 0,6 МДж/м2, з тривалістю імпульсу
~ 0,25 мс. Обговорюються механізми модифікації тонких багатошарових покриттів, змішаних з мідною
підкладкою в рідкій фазі при плазмовому опроміненні.
|