Anomalous diffusion of plasma in the lower hybrid cavities observed in the terrestrial ionosphere

The problem of the disappearance of the lower hybrid cavities, which are observed in the terrestrial ionosphere, is considered. As a possible mechanism which leads to the disappearance of the cavities the anomalous diffusion of plasma, which occurs due to a drift turbulence of plasma is considered...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2018
Main Authors: Azarenkov, N.A., Chibisov, D.V.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148868
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Anomalous diffusion of plasma in the lower hybrid cavities observed in the terrestrial ionosphere / N.A. Azarenkov, D.V. Chibisov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 117-120. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148868
record_format dspace
spelling Azarenkov, N.A.
Chibisov, D.V.
2019-02-18T20:41:56Z
2019-02-18T20:41:56Z
2018
Anomalous diffusion of plasma in the lower hybrid cavities observed in the terrestrial ionosphere / N.A. Azarenkov, D.V. Chibisov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 117-120. — Бібліогр.: 6 назв. — англ.
1562-6016
PACS: 52.35.Qz, 52.35.Ra, 94.20.wf
https://nasplib.isofts.kiev.ua/handle/123456789/148868
The problem of the disappearance of the lower hybrid cavities, which are observed in the terrestrial ionosphere, is considered. As a possible mechanism which leads to the disappearance of the cavities the anomalous diffusion of plasma, which occurs due to a drift turbulence of plasma is considered. The frequency and the characteristic time of development of the drift instability in the cavity, the saturation level of the instability and the anomalous diffusion coefficient of plasma in the cavity are obtained. The cavity lifetime is also estimated, which can be greater or about 1 second.
Розглянуто проблему зникнення нижньогібридних порожнин, які спостерігаються в земній іоносфері. В якості можливого механізму, який призводить до зникнення порожнин, розглядається аномальна дифузія плазми, що виникає внаслідок її дрейфової турбулентності. Отримано частоту і характерний час розвитку дрейфової нестійкості в порожнині, рівень насичення нестійкості і коефіцієнт аномальної дифузії плазми в порожнині. Також оцінюється час життя порожнини, який може становити більше або порядку 1 с.
Рассмотрена проблема исчезновения нижнегибридных полостей, наблюдаемых в земной ионосфере. В качестве возможного механизма, приводящего к исчезновению полостей, рассматривается аномальная диффузия плазмы, возникающая из-за её дрейфовой турбулентности. Получены частота и характерное время развития дрейфовой неустойчивости в полости, уровень насыщения неустойчивости и коэффициент аномальной диффузии плазмы в полости. Также оценивается время жизни полости, которое может составлять больше или порядка 1 с.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Фундаментальная физика плазмы
Anomalous diffusion of plasma in the lower hybrid cavities observed in the terrestrial ionosphere
Аномальна дифузія плазми в нижньогібридних порожнинах, що спостерігаються в земній іоносфері
Аномальная диффузия плазмы в нижнегибридных полостях, наблюдаемых в земной ионосфере
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Anomalous diffusion of plasma in the lower hybrid cavities observed in the terrestrial ionosphere
spellingShingle Anomalous diffusion of plasma in the lower hybrid cavities observed in the terrestrial ionosphere
Azarenkov, N.A.
Chibisov, D.V.
Фундаментальная физика плазмы
title_short Anomalous diffusion of plasma in the lower hybrid cavities observed in the terrestrial ionosphere
title_full Anomalous diffusion of plasma in the lower hybrid cavities observed in the terrestrial ionosphere
title_fullStr Anomalous diffusion of plasma in the lower hybrid cavities observed in the terrestrial ionosphere
title_full_unstemmed Anomalous diffusion of plasma in the lower hybrid cavities observed in the terrestrial ionosphere
title_sort anomalous diffusion of plasma in the lower hybrid cavities observed in the terrestrial ionosphere
author Azarenkov, N.A.
Chibisov, D.V.
author_facet Azarenkov, N.A.
Chibisov, D.V.
topic Фундаментальная физика плазмы
topic_facet Фундаментальная физика плазмы
publishDate 2018
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Аномальна дифузія плазми в нижньогібридних порожнинах, що спостерігаються в земній іоносфері
Аномальная диффузия плазмы в нижнегибридных полостях, наблюдаемых в земной ионосфере
description The problem of the disappearance of the lower hybrid cavities, which are observed in the terrestrial ionosphere, is considered. As a possible mechanism which leads to the disappearance of the cavities the anomalous diffusion of plasma, which occurs due to a drift turbulence of plasma is considered. The frequency and the characteristic time of development of the drift instability in the cavity, the saturation level of the instability and the anomalous diffusion coefficient of plasma in the cavity are obtained. The cavity lifetime is also estimated, which can be greater or about 1 second. Розглянуто проблему зникнення нижньогібридних порожнин, які спостерігаються в земній іоносфері. В якості можливого механізму, який призводить до зникнення порожнин, розглядається аномальна дифузія плазми, що виникає внаслідок її дрейфової турбулентності. Отримано частоту і характерний час розвитку дрейфової нестійкості в порожнині, рівень насичення нестійкості і коефіцієнт аномальної дифузії плазми в порожнині. Також оцінюється час життя порожнини, який може становити більше або порядку 1 с. Рассмотрена проблема исчезновения нижнегибридных полостей, наблюдаемых в земной ионосфере. В качестве возможного механизма, приводящего к исчезновению полостей, рассматривается аномальная диффузия плазмы, возникающая из-за её дрейфовой турбулентности. Получены частота и характерное время развития дрейфовой неустойчивости в полости, уровень насыщения неустойчивости и коэффициент аномальной диффузии плазмы в полости. Также оценивается время жизни полости, которое может составлять больше или порядка 1 с.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/148868
citation_txt Anomalous diffusion of plasma in the lower hybrid cavities observed in the terrestrial ionosphere / N.A. Azarenkov, D.V. Chibisov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 117-120. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT azarenkovna anomalousdiffusionofplasmainthelowerhybridcavitiesobservedintheterrestrialionosphere
AT chibisovdv anomalousdiffusionofplasmainthelowerhybridcavitiesobservedintheterrestrialionosphere
AT azarenkovna anomalʹnadifuzíâplazmivnižnʹogíbridnihporožninahŝosposterígaûtʹsâvzemníiíonosferí
AT chibisovdv anomalʹnadifuzíâplazmivnižnʹogíbridnihporožninahŝosposterígaûtʹsâvzemníiíonosferí
AT azarenkovna anomalʹnaâdiffuziâplazmyvnižnegibridnyhpolostâhnablûdaemyhvzemnoiionosfere
AT chibisovdv anomalʹnaâdiffuziâplazmyvnižnegibridnyhpolostâhnablûdaemyhvzemnoiionosfere
first_indexed 2025-11-25T20:44:31Z
last_indexed 2025-11-25T20:44:31Z
_version_ 1850531090398183424
fulltext ISSN 1562-6016. ВАНТ. 2018. №6(118) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 117-120. 117 ANOMALOUS DIFFUSION OF PLASMA IN THE LOWER HYBRID CAVITIES OBSERVED IN THE TERRESTRIAL IONOSPHERE N.A. Azarenkov, D.V. Chibisov V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: dmitriychibisov@karazin.ua The problem of the disappearance of the lower hybrid cavities, which are observed in the terrestrial ionosphere, is considered. As a possible mechanism which leads to the disappearance of the cavities the anomalous diffusion of plasma, which occurs due to a drift turbulence of plasma is considered. The frequency and the characteristic time of development of the drift instability in the cavity, the saturation level of the instability and the anomalous diffusion coefficient of plasma in the cavity are obtained. The cavity lifetime is also estimated, which can be greater or about 1 second. PACS: 52.35.Qz, 52.35.Ra, 94.20.wf INTRODUCTION In the plasma of terrestrial ionosphere the axially symmetric regions elongated along the geomagnetic field are observed, which are characterized by a reduced density of plasma in comparison with the environment as well as an increased level of oscillations in the range of the lower hybrid frequency [1]. Such regions called the lower hybrid cavities (LHC) and another name is the lower hybrid solitary structures (LHSS), have transverse dimensions of a few to many thermal ion gyroradii usu- ally from tens to hundreds of meters. The registration and measurements of the LHC are carried out by satel- lites as well as sounding rockets, and it occurs only when they pass through these structures. Because of the relatively small transverse dimensions of LHC and the high velocities of the spacecraft, the time of measure- ment is up to tens of milliseconds. However during this time the cavity does not change significantly, which indicates that LHC is sufficiently stable formation. Alt- hough there are a number of works on the explanation of this phenomenon which are given in the review [1], the mechanisms for occurrence of LHC, as well as their stability, are not completely clear. There are also no estimates of the time of their existence and the explana- tions of their disappearance. This paper is devoted to the problem of disappear- ance of LHC. As a possible mechanism for the disap- pearance of LHC we consider the anomalous diffusion of inhomogeneous plasma across the magnetic field. It is known that in magnetized plasma the excitation of various instabilities due to the radial inhomogeneity of the plasma density is possible. One of them is the drift lower hybrid instability due to which an increased level of low hybrid oscillations in the LHC is believed to oc- cur [1]. In addition, it is possible the excitation of a drift instability with a frequency much less than the ion cy- clotron frequency, which can lead to the lower frequen- cy drift turbulence of plasma. In turn, due to the drift turbulence, an anomalous diffusion of plasma across the magnetic field occurs, which should lead to the filling of the LHC with plasma and its disappearance. Since the cavities have axial symmetry, then an analysis of the development of turbulence as well as diffusion process- es in plasma of LHC in the present work is considered using the model of small-scale cylindrical waves [2-5]. We considered the linear as well as the nonlinear stages of drift instability for cavities conditions, found the lev- el of turbulence in the LHC, and also obtained the diffu- sion coefficient of plasma and solved the diffusion equation for given initial conditions. We also estimated the lifetime of the cavity. 1. DRIFT WAVE TURBULENCE IN THE LOWER HYBRID CAVITIES In homogeneous magnetized plasma, we consider the axially symmetric cavity whose axis coincides with z – directed magnetic field and the dependence of the plasma density on the radius as follows                    2 0 2 0 2 exp1 r r anrn , (1) which is the "inverse" Gaussian distribution. In (1) 0n is the plasma density in the environment, a is the con- stant which determines the depth of the cavity, 0r is the length of the plasma density inhomogeneity. Note that the dependence (1) was obtained by satellite measure- ments [1]. The measurements showed that the magni- tude of a varies up to 0.4, at altitudes of 600…1000 km, is up to 0.2 at altitudes of 1500…13000 km and does not exceed 0.05 at altitudes of 20000…35000 km. The velocity distribution for the components of plasma is assumed to be Maxwellian, which is confirmed by observations. The distribution function for the plasma in this case is [6]                             2 2 2 2 2 0 2 32/3 0 0 2v v 2 exp 2 exp1 v2          T z TT R R a n F , (2) where the subscript  denotes ions (i) or electrons (e), R ,  and v z , are the radial coordinate of the guiding center, Larmor radius and velocity along the magnetic field of the particles correspondingly, 0R  is the length of the inhomogeneity of the radial distribution of the guiding centers of particles,   cTT v is the ther- mal Larmor radius Tv is the thermal velocity, c is the cyclotron frequency. Plasma is assumed to slightly inhomogeneous, so that the inequality  TR 0 holds. The last condition yield 000 rRR ei  . Measurements have shown that the temperature of the plasma components in the cavities exceeds their 118 ISSN 1562-6016. ВАНТ. 2018. №6(118) temperature in the environment which is due to lower hybrid oscillations; in fact, it means that the tempera- tures of the electrons and ions inside the plasma cavity decrease with increasing of radius. Then assuming the dependence )( 0rT an arbitrary, we are sure that ine- quality 0T  hold. For the analysis of drift instability in the cavity, we use the dispersion relation for the linear stage of the small-scale, 1�0  mrk , low-frequency, ci  , oscillations in axially-symmetric plasma with arbitrary dependence of the density and temperature of the plas- ma components on the radius, which was obtained in [5]:          22*22 22 1( 1 1,, Ti i Ti fDi f k m k rk rk             fDe fi rk r 22 1 1        0 2/1 2 1 *            Tez fefe vk rrm i  . (3) Here k , m and zk are the transverse, azimuthal and longitudinal wave numbers, respectively,  zkkk , , )(ln/)(ln ff rndrTd   , T is the temperature, D is the Debye length,   frr Tc rdr rnd    ln2   is the drift frequency. For distribution of the plasma density in the cavity (1), we obtain approximately          2 0 2 2 0 2 2 exp r r r a fT c     with the fulfillment of inequality   c . Addi- tionally in (3) the assumptions ie TT  , 1 Tik  , are made. Equation (3) determines in the short wavelength as- ymptotic limit 1�0  mrk the dispersion properties of cylindrical waves analytically expressed by the Bessel functions ( )mJ k r . The values of the plasma parame- ters in Eq. (3) are determined at the point  kmrf which is approximately the radial coordinate of the first maximum of the Bessel function, for which this equa- tion is written. The solution of the equation (3) yield the frequency and the growth rate of the drift oscillations in LHC     22 22 * 1 11 s iTi em k k mk         , (4)       22 2 00 1 exp s ee mm k zz kk       , (5) where  ieTis TT /22   ,  /0 kz me  Tezk v2 . We note that the increase in the drift oscillations does not depend on the sign of the density gradient and is due the Che- renkov interaction of resonant electrons with drift waves. Considering also that under the conditions of the cavity the inequalities 0,0  nTi hold we have 0i . Assuming also that the lengths of the inhomo- geneity of the plasma density and the ion temperature are approximately equal, we get 1i , so the fre- quency of the drift oscillations in LHC is   22 * 1 s e m k m k      . (6) Let us estimate the value of the frequency of the drift oscillations (6) which are excited in the lower hy- brid cavities. At a height of up to 1000 the main ion component is the singly ionized oxygen, which here amounts to 90 %. The ion cyclotron frequency of oxy- gen ions is approximately 34 Hz, the ratio 3/0 Tir  , 4.0a . In this case, the frequency of the drift oscilla- tions is of the order of 3…4 Hz. A similar estimate of the drift frequency at altitudes of 1500…2000 km, where the main ion component is protons, is of the order of 8 Hz. we now evaluate the instability development time instt , which is equal to  km 1 . For the given plas- ma parameters in the cavity we obtain tinst ~0.5…1.5 s. Nonlinear evolution of the drift instability in the cavity is determined by the induced scattering of cylin- drical waves by ions [2-5]. The kinetic equation for the spectral intensity  kIm of small-scale cylindrical waves in plasma with arbitrary dependences on the radius of density and temperature is [5]:       kIkk t kI mmm m     )( 2 1 , (7) where  km is the nonlinear growth rate of drift waves                      1 1 1111 1 ,, Re m m m m mkmkBkIdk k k       111 1 ,,,Im kmkkmkU mmi  . (8) In (6) the value  is given by (3),  11,, mkmkB  is the factor of nonlinear interaction of cylindrical waves [2-4]                         ,, , , cos 1 ,, 101 2 101 31 1010 32 31 10101 10 11 mmmO mmmmmO mmm k k m mkmkB  where ,110  kmkm 22 10 2 /1cos ff rr , 111 /  kmr f ; iUIm is the matrix element of the induced scattering of drift waves by ions which is equal to              0 2 2 2*122 12 2 22 cosIm       k rmm kk T e k U m fi Ti iDi i     11   kk mm  , (9) where [5]          2 11 ln 22 1 22 2* frr iTiTicifi kk rdr rnd r     , 222 /  kmrf is the coordinate of the first maximum of a cylindrical “beat wave” of two cylindrical waves with wave numbers  mk , and  11, mk . The wave num- bers of the beat wave are determined by [2-4] ISSN 1562-6016. ВАНТ. 2018. №6(118) 119 12 mmm  , 2 101 2 2 sin2   kkkkk  . In cavity conditions when (1) hold, we have approxi- mately            2 0 2 2 2 0 2 2* 2 exp r r r ar fTi cifi   . Apply the equation (7) for the analysis of the nonlin- ear stage of drift turbulence in the conditions of the lower hybrid cavities. First by using the condition    11   kk mm  we determine the radial wave num- ber 1k of the cylindrical wave )( 11 rkJm  interacting with the wave ( )mJ k r : 1221122 1   ss k m m m m k  . (10) Using (10) we get for 0 2cos   22 122 1 2 1 0 2cos s s kmm km mm         . The requirement 0cos 0 2  leads to systems of ine- qualities       22 1 1 , skmm mm  (11) or       . , 22 1 1 skmm mm  (12) The system (11) has a solution when 122  sk  : mm k m s   122 . (13) In this case, only long waves  rkJm 11  with azimuthal wave numbers mm 1 interact with the wave  rkJ m  . Then the nonlinear growth rate in equation (7), which is proportional to the sum      1 1 m m mmk , is nega- tive and the wave  rkJ m  turns out to be nonlinearly damped. Thus in LHC the part of the drift oscillating spectrum with 122  sk  damped nonlinearly and disap- pears finally. The system (12) has a solution for the long wave- length part of the spectrum when 122  sk  : 221 sk m mm   . (14) In this case the wave  rkJ m  interact only with the shorter waves  rkJm 11  for which mm 1 . Then the non- linear growth rate      1 1 m m mmk , is positive and the wave  rkJ m  grows nonlinearly. The saturation analysis of the drift turbulence in LHC at 122  sk  re- quires going beyond the frame of weak turbulence theo- ry. However, in [3], the saturation level of the drift tur- bulence is estimated in the case of a homogeneous tem- perature distribution and the Gaussian dependence of the plasma density on the radius 2 0 2 0 rTn W s i   . (15) We believe that this level of saturation is also reached for LHC. 2. ANOMALOUS DIFFUSION OF PLASMA IN THE LOWER HYBRID CAVITIES As a result of the drift turbulence, a change in the averaged distribution function of plasma components occurs in the cavity plasma. The evolution of the distri- bution function of electrons is governed by the quasilin- ear equation [3]               m eece zzmm e e RR m vkkkdkI m e t F 12 0                       z e z e e ece em z z v F k R F R m RkJ v k 002 1  . (16) Integrating (16) with respect to e and zv , and also considering that rRe  , we obtain the diffusion equa- tion for resonant electrons               r n rD rrt n e e e 1 , (17) where           m m m meme k k kIRkJ r m dk B c D 2 2 2 2 2 0 2   is the electron diffusion coefficient across the magnetic field. For the level of turbulence (15) we have 00 r z eB cT D see e   . (18) For the most rapidly growing part of the instability spectrum, we have 1~ez . The diffusion of ions across the magnetic field occurs as a result of ion scattering by random pulsations of the electric field of drift turbu- lence [3]. The evolution of the ion distribution function is determined by the equation               r n rD rrt n i i i 1 (19) with the diffusion coefficient iD which equal to the electron diffusion coefficient (18)   DDD ei , so that the diffusion is ambipolar. The equations (17) and (19) give diffusion of plasma in the direction of the cen- ter of cavity, since the plasma density increases from the center. The solution of the diffusion equation (17) or (19) with initial condition (1) is                        tr r t a ntrn 22 0 2 20 2 exp1,  (20) where   t r D t 2 0 2 2 1  . Equation (20) shows that the cavity depth  ta decreas- es with time as 120 ISSN 1562-6016. ВАНТ. 2018. №6(118)   1 2 0 2 1            t r D ata . (21) In addition to decreasing the depth of the cavity, an in- crease in the transverse dimension of the cavity occurs, the mean square root of the cavity is determined by   t r D rtr 2 0 00 2 1  . Now we evaluate the time of change in the cavity depth by k times. Equating (21) to ka / we get      D rk tk 2 1 2 0 . Respectively, transverse dimension of the cavity in- creases by k times. Substitution of the diffusion coef- ficient (18) yields   se k cT eBrk t 2 1 0 3 0  . (22) For the parameters of cavities in the ionosphere r0 /ρs 3, r0 ~ 50 m, B0 ~ 0.2 Gs, Te ~ 0.3 eV and as- suming that the depth of the cavity decreases, for ex- ample, by 10 times, that is 10k , we have t10 ~ 10- 3 s. A comparison of the time of change in the depth of the cavity and the time of development of the drift instability, tinst ~0.5…1.5 s, shows that the lifetime ltt of the cavity is determined basically by the time of development of the drift instability in the cavit that is tlt ~0.5…1.5 s. CONCLUSIONS Radial inhomogeneity of the plasma density and temperature in the plasma of LHC leads to the devel- opment of the drift instability and drift turbulence of plasma in the cavity. In turn, drift turbulence causes an anomalous diffusion of the plasma across the magnetic field, which leads to the disappearance of the cavity. It was found that the time of anomalous plasma transport across the magnetic field is much smaller than the characteristic time of the development of the drift instability, so that the lifetime of the cavity is deter- mined by the growth rate of the instability, which is of the order of or more than 1 s. REFERENCES 1. P.W. Schuck J. W. Bonnell, P. M. Kintner. A review of lower hybrid solitary structures // IEEE Trans. Plasma Sci. 2003, v. 31, № 6, p. 1125-1177. 2. D.V. Chibisov, V.S. Mikhailenko, K.N. Stepanov. Drift wave turbulence of a radially inhomogeneous plasma // Phys. Lett. A. 1991, v. 157, p. 141-145. 3. V.S. Mikhailenko, K.N. Stepanov, D.V. Chibisov. Drift and drift-cyclotron turbulence of a radially vary- ing axisymmetric plasma // Soviet Journal of Plasma Physics. 1991, v. 17, № 10, p. 710-716. 4. V.S. Mikhailenko, K.N. Stepanov, D.V. Chibisov. Ion cyclotron turbulence theory of rotating plasmas // Plasma Phys. Control. Fusion. 1992, v. 34, № 1, p. 95- 117. 5. V.S. Mikhailenko, K.N. Stepanov, D.V. Chibisov. Drift turbulence of an azimutally symmetric radially nonuniform plasma // Plasma Phys. Rep. 1995, v. 21. № 12, p. 141-150. 6. D.V. Chibisov. Ion cyclotron turbulence in plasma of lower hybrid cavities in the earth’s ionosphere // Prob- lems of Atomic Science and Technology. Ser. “Plasma Physics”. 2015, № 4, p. 148-151. Article received 14.09.2018 АНОМАЛЬНАЯ ДИФФУЗИЯ ПЛАЗМЫ В НИЖНЕГИБРИДНЫХ ПОЛОСТЯХ, НАБЛЮДАЕМЫХ В ЗЕМНОЙ ИОНОСФЕРЕ Н.А. Азаренков, Д.В.Чибисов Рассмотрена проблема исчезновения нижнегибридных полостей, наблюдаемых в земной ионосфере. В каче- стве возможного механизма, приводящего к исчезновению полостей, рассматривается аномальная диффузия плазмы, возникающая из-за её дрейфовой турбулентности. Получены частота и характерное время развития дрейфовой неустойчивости в полости, уровень насыщения неустойчивости и коэффициент аномальной диффузии плазмы в полости. Также оценивается время жизни полости, которое может составлять больше или порядка 1 с. АНОМАЛЬНА ДИФУЗІЯ ПЛАЗМИ В НИЖНЬОГІБРИДНИХ ПОРОЖНИНАХ, ЩО СПОСТЕРІГАЮТЬСЯ В ЗЕМНІЙ ІОНОСФЕРІ М.О. Азарєнков, Д.В. Чібісов Розглянуто проблему зникнення нижньогібридних порожнин, які спостерігаються в земній іоносфері. В яко- сті можливого механізму, який призводить до зникнення порожнин, розглядається аномальна дифузія плазми, що виникає внаслідок її дрейфової турбулентності. Отримано частоту і характерний час розвитку дрейфової нестійкості в порожнині, рівень насичення нестійкості і коефіцієнт аномальної дифузії плазми в порожнині. Також оцінюється час життя порожнини, який може становити більше або порядку 1 с.