Global Attraction to Solitary Waves in Models Based on the Klein-Gordon Equatio

We review recent results on global attractors of U(1)-invariant dispersive Hamiltonian systems. We study several models based on the Klein-Gordon equation and sketch the proof that in these models, under certain generic assumptions, the weak global attractor is represented by the set of all solitary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2008
Hauptverfasser: Komech, A.I., Komech, A.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148974
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Global Attraction to Solitary Waves in Models Based on the Klein-Gordon Equatio / A.I. Komech, A.A. Komech // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 58 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We review recent results on global attractors of U(1)-invariant dispersive Hamiltonian systems. We study several models based on the Klein-Gordon equation and sketch the proof that in these models, under certain generic assumptions, the weak global attractor is represented by the set of all solitary waves. In general, the attractors may also contain multifrequency solitary waves; we give examples of systems which contain such solutions.
ISSN:1815-0659