The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time

The variational principle and the corresponding differential equation for geodesic circles in two dimensional (pseudo)-Riemannian space are being discovered. The relationship with the physical notion of uniformly accelerated relativistic particle is emphasized. The known form of spin-curvature inter...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2008
Автор: Matsyuk, R.Ya.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148976
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time / R.Ya. Matsyuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148976
record_format dspace
spelling Matsyuk, R.Ya.
2019-02-19T12:21:56Z
2019-02-19T12:21:56Z
2008
The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time / R.Ya. Matsyuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 19 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 53A40; 70H50; 49N45; 83C10
https://nasplib.isofts.kiev.ua/handle/123456789/148976
The variational principle and the corresponding differential equation for geodesic circles in two dimensional (pseudo)-Riemannian space are being discovered. The relationship with the physical notion of uniformly accelerated relativistic particle is emphasized. The known form of spin-curvature interaction emerges due to the presence of second order derivatives in the expression for the Lagrange function. The variational equation itself reduces to the unique invariant variational equation of constant Frenet curvature in two dimensional (pseudo)-Euclidean geometry.
This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). This work was supported by the Grant GACR 201/06/0922 of Czech Science Foundation.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time
spellingShingle The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time
Matsyuk, R.Ya.
title_short The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time
title_full The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time
title_fullStr The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time
title_full_unstemmed The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time
title_sort variational principle for the uniform acceleration and quasi-spin in two dimensional space-time
author Matsyuk, R.Ya.
author_facet Matsyuk, R.Ya.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The variational principle and the corresponding differential equation for geodesic circles in two dimensional (pseudo)-Riemannian space are being discovered. The relationship with the physical notion of uniformly accelerated relativistic particle is emphasized. The known form of spin-curvature interaction emerges due to the presence of second order derivatives in the expression for the Lagrange function. The variational equation itself reduces to the unique invariant variational equation of constant Frenet curvature in two dimensional (pseudo)-Euclidean geometry.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148976
citation_txt The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time / R.Ya. Matsyuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT matsyukrya thevariationalprinciplefortheuniformaccelerationandquasispinintwodimensionalspacetime
AT matsyukrya variationalprinciplefortheuniformaccelerationandquasispinintwodimensionalspacetime
first_indexed 2025-11-28T02:25:42Z
last_indexed 2025-11-28T02:25:42Z
_version_ 1850853304213438464