Quasi-Linear Algebras and Integrability (the Heisenberg Picture)

We study Poisson and operator algebras with the ''quasi-linear property'' from the Heisenberg picture point of view. This means that there exists a set of one-parameter groups yielding an explicit expression of dynamical variables (operators) as functions of ''time'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2008
Hauptverfasser: Vinet, L., Zhedanov, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148977
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Quasi-Linear Algebras and Integrability (the Heisenberg Picture) / L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148977
record_format dspace
spelling Vinet, L.
Zhedanov, A.
2019-02-19T12:22:25Z
2019-02-19T12:22:25Z
2008
Quasi-Linear Algebras and Integrability (the Heisenberg Picture) / L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 29 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 17B63; 17B37; 47L90
https://nasplib.isofts.kiev.ua/handle/123456789/148977
We study Poisson and operator algebras with the ''quasi-linear property'' from the Heisenberg picture point of view. This means that there exists a set of one-parameter groups yielding an explicit expression of dynamical variables (operators) as functions of ''time'' t. We show that many algebras with nonlinear commutation relations such as the Askey-Wilson, q-Dolan-Grady and others satisfy this property. This provides one more (explicit Heisenberg evolution) interpretation of the corresponding integrable systems.
This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Quasi-Linear Algebras and Integrability (the Heisenberg Picture)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quasi-Linear Algebras and Integrability (the Heisenberg Picture)
spellingShingle Quasi-Linear Algebras and Integrability (the Heisenberg Picture)
Vinet, L.
Zhedanov, A.
title_short Quasi-Linear Algebras and Integrability (the Heisenberg Picture)
title_full Quasi-Linear Algebras and Integrability (the Heisenberg Picture)
title_fullStr Quasi-Linear Algebras and Integrability (the Heisenberg Picture)
title_full_unstemmed Quasi-Linear Algebras and Integrability (the Heisenberg Picture)
title_sort quasi-linear algebras and integrability (the heisenberg picture)
author Vinet, L.
Zhedanov, A.
author_facet Vinet, L.
Zhedanov, A.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study Poisson and operator algebras with the ''quasi-linear property'' from the Heisenberg picture point of view. This means that there exists a set of one-parameter groups yielding an explicit expression of dynamical variables (operators) as functions of ''time'' t. We show that many algebras with nonlinear commutation relations such as the Askey-Wilson, q-Dolan-Grady and others satisfy this property. This provides one more (explicit Heisenberg evolution) interpretation of the corresponding integrable systems.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148977
citation_txt Quasi-Linear Algebras and Integrability (the Heisenberg Picture) / L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 29 назв. — англ.
work_keys_str_mv AT vinetl quasilinearalgebrasandintegrabilitytheheisenbergpicture
AT zhedanova quasilinearalgebrasandintegrabilitytheheisenbergpicture
first_indexed 2025-12-07T19:02:08Z
last_indexed 2025-12-07T19:02:08Z
_version_ 1850877283689037824