Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation

In a previous work the concept of quantum potential is generalized into extended phase space (EPS) for a particle in linear and harmonic potentials. It was shown there that in contrast to the Schrödinger quantum mechanics by an appropriate extended canonical transformation one can obtain the Wigner...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2008
Автори: Bahrami, S., Nasiri, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148984
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation / S. Bahrami, S. Nasiri // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148984
record_format dspace
spelling Bahrami, S.
Nasiri, S.
2019-02-19T12:41:22Z
2019-02-19T12:41:22Z
2008
Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation / S. Bahrami, S. Nasiri // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 81S30
https://nasplib.isofts.kiev.ua/handle/123456789/148984
In a previous work the concept of quantum potential is generalized into extended phase space (EPS) for a particle in linear and harmonic potentials. It was shown there that in contrast to the Schrödinger quantum mechanics by an appropriate extended canonical transformation one can obtain the Wigner representation of phase space quantum mechanics in which the quantum potential is removed from dynamical equation. In other words, one still has the form invariance of the ordinary Hamilton-Jacobi equation in this representation. The situation, mathematically, is similar to the disappearance of the centrifugal potential in going from the spherical to the Cartesian coordinates. Here we show that the Husimi representation is another possible representation where the quantum potential for the harmonic potential disappears and the modified Hamilton-Jacobi equation reduces to the familiar classical form. This happens when the parameter in the Husimi transformation assumes a specific value corresponding to Q-function.
This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). The financial support of Research Council of Zanjan University, Zanjan, Iran is appreciated.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
spellingShingle Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
Bahrami, S.
Nasiri, S.
title_short Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
title_full Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
title_fullStr Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
title_full_unstemmed Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
title_sort symmetry transformation in extended phase space: the harmonic oscillator in the husimi representation
author Bahrami, S.
Nasiri, S.
author_facet Bahrami, S.
Nasiri, S.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In a previous work the concept of quantum potential is generalized into extended phase space (EPS) for a particle in linear and harmonic potentials. It was shown there that in contrast to the Schrödinger quantum mechanics by an appropriate extended canonical transformation one can obtain the Wigner representation of phase space quantum mechanics in which the quantum potential is removed from dynamical equation. In other words, one still has the form invariance of the ordinary Hamilton-Jacobi equation in this representation. The situation, mathematically, is similar to the disappearance of the centrifugal potential in going from the spherical to the Cartesian coordinates. Here we show that the Husimi representation is another possible representation where the quantum potential for the harmonic potential disappears and the modified Hamilton-Jacobi equation reduces to the familiar classical form. This happens when the parameter in the Husimi transformation assumes a specific value corresponding to Q-function.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148984
citation_txt Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation / S. Bahrami, S. Nasiri // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT bahramis symmetrytransformationinextendedphasespacetheharmonicoscillatorinthehusimirepresentation
AT nasiris symmetrytransformationinextendedphasespacetheharmonicoscillatorinthehusimirepresentation
first_indexed 2025-12-07T19:31:49Z
last_indexed 2025-12-07T19:31:49Z
_version_ 1850879151836233728