Non-Gatherable Triples for Non-Affine Root Systems

This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, F₄ and E₆. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2008
Main Authors: Cherednik, I., Schneider, K.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148985
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Non-Gatherable Triples for Non-Affine Root Systems / I. Cherednik, K. Schneider // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148985
record_format dspace
spelling Cherednik, I.
Schneider, K.
2019-02-19T12:42:00Z
2019-02-19T12:42:00Z
2008
Non-Gatherable Triples for Non-Affine Root Systems / I. Cherednik, K. Schneider // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 7 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 20H15; 20F55
https://nasplib.isofts.kiev.ua/handle/123456789/148985
This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, F₄ and E₆. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples is a combinatorial obstacle for using the technique of intertwiners for an explicit description of the irreducible representations of the (double) affine Hecke algebras, complementary to their algebraic-geometric theory.
This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. Partially supported by NSF grant DMS–0800642.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Non-Gatherable Triples for Non-Affine Root Systems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Non-Gatherable Triples for Non-Affine Root Systems
spellingShingle Non-Gatherable Triples for Non-Affine Root Systems
Cherednik, I.
Schneider, K.
title_short Non-Gatherable Triples for Non-Affine Root Systems
title_full Non-Gatherable Triples for Non-Affine Root Systems
title_fullStr Non-Gatherable Triples for Non-Affine Root Systems
title_full_unstemmed Non-Gatherable Triples for Non-Affine Root Systems
title_sort non-gatherable triples for non-affine root systems
author Cherednik, I.
Schneider, K.
author_facet Cherednik, I.
Schneider, K.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, F₄ and E₆. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples is a combinatorial obstacle for using the technique of intertwiners for an explicit description of the irreducible representations of the (double) affine Hecke algebras, complementary to their algebraic-geometric theory.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148985
citation_txt Non-Gatherable Triples for Non-Affine Root Systems / I. Cherednik, K. Schneider // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT cheredniki nongatherabletriplesfornonaffinerootsystems
AT schneiderk nongatherabletriplesfornonaffinerootsystems
first_indexed 2025-12-07T18:26:29Z
last_indexed 2025-12-07T18:26:29Z
_version_ 1850875041378467840