Non-Gatherable Triples for Non-Affine Root Systems
This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, F₄ and E₆. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2008 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2008
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/148985 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Non-Gatherable Triples for Non-Affine Root Systems / I. Cherednik, K. Schneider // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148985 |
|---|---|
| record_format |
dspace |
| spelling |
Cherednik, I. Schneider, K. 2019-02-19T12:42:00Z 2019-02-19T12:42:00Z 2008 Non-Gatherable Triples for Non-Affine Root Systems / I. Cherednik, K. Schneider // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 7 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 20H15; 20F55 https://nasplib.isofts.kiev.ua/handle/123456789/148985 This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, F₄ and E₆. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples is a combinatorial obstacle for using the technique of intertwiners for an explicit description of the irreducible representations of the (double) affine Hecke algebras, complementary to their algebraic-geometric theory. This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. Partially supported by NSF grant DMS–0800642. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Non-Gatherable Triples for Non-Affine Root Systems Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Non-Gatherable Triples for Non-Affine Root Systems |
| spellingShingle |
Non-Gatherable Triples for Non-Affine Root Systems Cherednik, I. Schneider, K. |
| title_short |
Non-Gatherable Triples for Non-Affine Root Systems |
| title_full |
Non-Gatherable Triples for Non-Affine Root Systems |
| title_fullStr |
Non-Gatherable Triples for Non-Affine Root Systems |
| title_full_unstemmed |
Non-Gatherable Triples for Non-Affine Root Systems |
| title_sort |
non-gatherable triples for non-affine root systems |
| author |
Cherednik, I. Schneider, K. |
| author_facet |
Cherednik, I. Schneider, K. |
| publishDate |
2008 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, F₄ and E₆. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples is a combinatorial obstacle for using the technique of intertwiners for an explicit description of the irreducible representations of the (double) affine Hecke algebras, complementary to their algebraic-geometric theory.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148985 |
| citation_txt |
Non-Gatherable Triples for Non-Affine Root Systems / I. Cherednik, K. Schneider // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT cheredniki nongatherabletriplesfornonaffinerootsystems AT schneiderk nongatherabletriplesfornonaffinerootsystems |
| first_indexed |
2025-12-07T18:26:29Z |
| last_indexed |
2025-12-07T18:26:29Z |
| _version_ |
1850875041378467840 |