Liouville Theorem for Dunkl Polyharmonic Functions

Assume that f is Dunkl polyharmonic in Rn (i.e. (Δh)p f = 0 for some integer p, where Δh is the Dunkl Laplacian associated to a root system R and to a multiplicity function κ, defined on R and invariant with respect to the finite Coxeter group). Necessary and successful condition that f is a polynom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2008
Hauptverfasser: Ren, G., Liu, L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148992
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Liouville Theorem for Dunkl Polyharmonic Functions / G. Ren, L. Liu // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліор.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148992
record_format dspace
spelling Ren, G.
Liu, L.
2019-02-19T12:47:17Z
2019-02-19T12:47:17Z
2008
Liouville Theorem for Dunkl Polyharmonic Functions / G. Ren, L. Liu // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліор.: 17 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 33C52; 31A30; 35C10
https://nasplib.isofts.kiev.ua/handle/123456789/148992
Assume that f is Dunkl polyharmonic in Rn (i.e. (Δh)p f = 0 for some integer p, where Δh is the Dunkl Laplacian associated to a root system R and to a multiplicity function κ, defined on R and invariant with respect to the finite Coxeter group). Necessary and successful condition that f is a polynomial of degree ≤ s for s ≥ 2p – 2 is proved. As a direct corollary, a Dunkl harmonic function bounded above or below is constant.
This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. The authors would like to thank the referees for their useful comments. The research is supported by the Unidade de Investiga¸c˜ao “Matem´atica e Aplica¸c˜oes” of University of Aveiro, and by the NNSF of China (No. 10771201), NCET-05-0539.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Liouville Theorem for Dunkl Polyharmonic Functions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Liouville Theorem for Dunkl Polyharmonic Functions
spellingShingle Liouville Theorem for Dunkl Polyharmonic Functions
Ren, G.
Liu, L.
title_short Liouville Theorem for Dunkl Polyharmonic Functions
title_full Liouville Theorem for Dunkl Polyharmonic Functions
title_fullStr Liouville Theorem for Dunkl Polyharmonic Functions
title_full_unstemmed Liouville Theorem for Dunkl Polyharmonic Functions
title_sort liouville theorem for dunkl polyharmonic functions
author Ren, G.
Liu, L.
author_facet Ren, G.
Liu, L.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Assume that f is Dunkl polyharmonic in Rn (i.e. (Δh)p f = 0 for some integer p, where Δh is the Dunkl Laplacian associated to a root system R and to a multiplicity function κ, defined on R and invariant with respect to the finite Coxeter group). Necessary and successful condition that f is a polynomial of degree ≤ s for s ≥ 2p – 2 is proved. As a direct corollary, a Dunkl harmonic function bounded above or below is constant.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148992
citation_txt Liouville Theorem for Dunkl Polyharmonic Functions / G. Ren, L. Liu // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліор.: 17 назв. — англ.
work_keys_str_mv AT reng liouvilletheoremfordunklpolyharmonicfunctions
AT liul liouvilletheoremfordunklpolyharmonicfunctions
first_indexed 2025-11-28T18:45:19Z
last_indexed 2025-11-28T18:45:19Z
_version_ 1850854105081184256