An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie
We revisit the third fundamental theorem of Lie (Lie III) for finite dimensional Lie algebras in the context of infinite dimensional matrices.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2008 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2008
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/148993 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie / R.D. Bourgin, T.P. Robart // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148993 |
|---|---|
| record_format |
dspace |
| spelling |
Bourgin, R.D. Robart, T.P. 2019-02-19T12:48:14Z 2019-02-19T12:48:14Z 2008 An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie / R.D. Bourgin, T.P. Robart // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 16 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 15A09; 15A29; 17A99; 17B66; 17D99; 22A22; 22A25; 22E05; 22E15; 22E45; 58H05 https://nasplib.isofts.kiev.ua/handle/123456789/148993 We revisit the third fundamental theorem of Lie (Lie III) for finite dimensional Lie algebras in the context of infinite dimensional matrices. This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie |
| spellingShingle |
An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie Bourgin, R.D. Robart, T.P. |
| title_short |
An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie |
| title_full |
An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie |
| title_fullStr |
An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie |
| title_full_unstemmed |
An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie |
| title_sort |
infinite dimensional approach to the third fundamental theorem of lie |
| author |
Bourgin, R.D. Robart, T.P. |
| author_facet |
Bourgin, R.D. Robart, T.P. |
| publishDate |
2008 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We revisit the third fundamental theorem of Lie (Lie III) for finite dimensional Lie algebras in the context of infinite dimensional matrices.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148993 |
| citation_txt |
An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie / R.D. Bourgin, T.P. Robart // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT bourginrd aninfinitedimensionalapproachtothethirdfundamentaltheoremoflie AT robarttp aninfinitedimensionalapproachtothethirdfundamentaltheoremoflie AT bourginrd infinitedimensionalapproachtothethirdfundamentaltheoremoflie AT robarttp infinitedimensionalapproachtothethirdfundamentaltheoremoflie |
| first_indexed |
2025-12-02T09:08:21Z |
| last_indexed |
2025-12-02T09:08:21Z |
| _version_ |
1850862006946496512 |