Affine Poisson Groups and WZW Model
We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of i...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2008 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2008
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/148997 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148997 |
|---|---|
| record_format |
dspace |
| spelling |
Klimcík, C. 2019-02-19T12:51:08Z 2019-02-19T12:51:08Z 2008 Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81T40 https://nasplib.isofts.kiev.ua/handle/123456789/148997 We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations. This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Affine Poisson Groups and WZW Model Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Affine Poisson Groups and WZW Model |
| spellingShingle |
Affine Poisson Groups and WZW Model Klimcík, C. |
| title_short |
Affine Poisson Groups and WZW Model |
| title_full |
Affine Poisson Groups and WZW Model |
| title_fullStr |
Affine Poisson Groups and WZW Model |
| title_full_unstemmed |
Affine Poisson Groups and WZW Model |
| title_sort |
affine poisson groups and wzw model |
| author |
Klimcík, C. |
| author_facet |
Klimcík, C. |
| publishDate |
2008 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148997 |
| citation_txt |
Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT klimcikc affinepoissongroupsandwzwmodel |
| first_indexed |
2025-12-07T19:11:54Z |
| last_indexed |
2025-12-07T19:11:54Z |
| _version_ |
1850877898828808192 |