Affine Poisson Groups and WZW Model

We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of i...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2008
Автор: Klimcík, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148997
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148997
record_format dspace
spelling Klimcík, C.
2019-02-19T12:51:08Z
2019-02-19T12:51:08Z
2008
Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 81T40
https://nasplib.isofts.kiev.ua/handle/123456789/148997
We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations.
This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Affine Poisson Groups and WZW Model
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Affine Poisson Groups and WZW Model
spellingShingle Affine Poisson Groups and WZW Model
Klimcík, C.
title_short Affine Poisson Groups and WZW Model
title_full Affine Poisson Groups and WZW Model
title_fullStr Affine Poisson Groups and WZW Model
title_full_unstemmed Affine Poisson Groups and WZW Model
title_sort affine poisson groups and wzw model
author Klimcík, C.
author_facet Klimcík, C.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148997
citation_txt Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT klimcikc affinepoissongroupsandwzwmodel
first_indexed 2025-12-07T19:11:54Z
last_indexed 2025-12-07T19:11:54Z
_version_ 1850877898828808192