On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations

We construct Miura transformations mapping the scalar spectral problems of the integrable lattice equations belonging to the Adler-Bobenko-Suris (ABS) list into the discrete Schrödinger spectral problem associated with Volterra-type equations. We show that the ABS equations correspond to Bäcklund tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2008
Hauptverfasser: Levi, D., Petrera, M., Scimiterna, C., Yamilov, R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149004
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations / D. Levi, M. Petrera, C. Scimiterna, R. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We construct Miura transformations mapping the scalar spectral problems of the integrable lattice equations belonging to the Adler-Bobenko-Suris (ABS) list into the discrete Schrödinger spectral problem associated with Volterra-type equations. We show that the ABS equations correspond to Bäcklund transformations for some particular cases of the discrete Krichever-Novikov equation found by Yamilov (YdKN equation). This enables us to construct new generalized symmetries for the ABS equations. The same can be said about the generalizations of the ABS equations introduced by Tongas, Tsoubelis and Xenitidis. All of them generate Bäcklund transformations for the YdKN equation. The higher order generalized symmetries we construct in the present paper confirm their integrability.
ISSN:1815-0659