On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations

We construct Miura transformations mapping the scalar spectral problems of the integrable lattice equations belonging to the Adler-Bobenko-Suris (ABS) list into the discrete Schrödinger spectral problem associated with Volterra-type equations. We show that the ABS equations correspond to Bäcklund tr...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2008
Автори: Levi, D., Petrera, M., Scimiterna, C., Yamilov, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149004
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations / D. Levi, M. Petrera, C. Scimiterna, R. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149004
record_format dspace
spelling Levi, D.
Petrera, M.
Scimiterna, C.
Yamilov, R.
2019-02-19T12:54:07Z
2019-02-19T12:54:07Z
2008
On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations / D. Levi, M. Petrera, C. Scimiterna, R. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 31 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37K10; 37L20; 39A05
https://nasplib.isofts.kiev.ua/handle/123456789/149004
We construct Miura transformations mapping the scalar spectral problems of the integrable lattice equations belonging to the Adler-Bobenko-Suris (ABS) list into the discrete Schrödinger spectral problem associated with Volterra-type equations. We show that the ABS equations correspond to Bäcklund transformations for some particular cases of the discrete Krichever-Novikov equation found by Yamilov (YdKN equation). This enables us to construct new generalized symmetries for the ABS equations. The same can be said about the generalizations of the ABS equations introduced by Tongas, Tsoubelis and Xenitidis. All of them generate Bäcklund transformations for the YdKN equation. The higher order generalized symmetries we construct in the present paper confirm their integrability.
DL, MP and CS have been partially supported by PRIN Project Metodi geometrici nella teoria delle onde non lineari ed applicazioni-2006 of the Italian Minister for Education and Scientific Research. RY has been partially supported by the Russian Foundation for Basic Research (Grant numbers 07-01-00081-a and 06-01-92051-KE-a) and he thanks the University of Roma Tre for hospitality. This work has been done in the framework of the Project Classification of integrable discrete and continuous models financed by a joint grant from EINSTEIN consortium and RFBR.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
spellingShingle On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
Levi, D.
Petrera, M.
Scimiterna, C.
Yamilov, R.
title_short On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
title_full On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
title_fullStr On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
title_full_unstemmed On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
title_sort on miura transformations and volterra-type equations associated with the adler-bobenko-suris equations
author Levi, D.
Petrera, M.
Scimiterna, C.
Yamilov, R.
author_facet Levi, D.
Petrera, M.
Scimiterna, C.
Yamilov, R.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We construct Miura transformations mapping the scalar spectral problems of the integrable lattice equations belonging to the Adler-Bobenko-Suris (ABS) list into the discrete Schrödinger spectral problem associated with Volterra-type equations. We show that the ABS equations correspond to Bäcklund transformations for some particular cases of the discrete Krichever-Novikov equation found by Yamilov (YdKN equation). This enables us to construct new generalized symmetries for the ABS equations. The same can be said about the generalizations of the ABS equations introduced by Tongas, Tsoubelis and Xenitidis. All of them generate Bäcklund transformations for the YdKN equation. The higher order generalized symmetries we construct in the present paper confirm their integrability.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149004
citation_txt On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations / D. Levi, M. Petrera, C. Scimiterna, R. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 31 назв. — англ.
work_keys_str_mv AT levid onmiuratransformationsandvolterratypeequationsassociatedwiththeadlerbobenkosurisequations
AT petreram onmiuratransformationsandvolterratypeequationsassociatedwiththeadlerbobenkosurisequations
AT scimiternac onmiuratransformationsandvolterratypeequationsassociatedwiththeadlerbobenkosurisequations
AT yamilovr onmiuratransformationsandvolterratypeequationsassociatedwiththeadlerbobenkosurisequations
first_indexed 2025-12-07T17:31:40Z
last_indexed 2025-12-07T17:31:40Z
_version_ 1850871592000684032