Solutions Classification to the Extended Reduced Ostrovsky Equation

An alternative to the Parkes' approach [SIGMA 4 (2008), 053, 17 pages] is suggested for the solutions categorization to the extended reduced Ostrovsky equation (the exROE in Parkes' terminology). The approach is based on the application of the qualitative theory of differential equations w...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2008
Автор: Stepanyants, Y.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149006
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Solutions Classification to the Extended Reduced Ostrovsky Equation / Y.A. Stepanyants // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149006
record_format dspace
spelling Stepanyants, Y.A.
2019-02-19T12:54:54Z
2019-02-19T12:54:54Z
2008
Solutions Classification to the Extended Reduced Ostrovsky Equation / Y.A. Stepanyants // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 5 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 35Q58; 35Q53; 35C05
https://nasplib.isofts.kiev.ua/handle/123456789/149006
An alternative to the Parkes' approach [SIGMA 4 (2008), 053, 17 pages] is suggested for the solutions categorization to the extended reduced Ostrovsky equation (the exROE in Parkes' terminology). The approach is based on the application of the qualitative theory of differential equations which includes a mechanical analogy with the point particle motion in a potential field, the phase plane method, analysis of homoclinic trajectories and the like. Such an approach is seemed more vivid and free of some restrictions contained in [SIGMA 4 (2008), 053, 17 pages].
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Solutions Classification to the Extended Reduced Ostrovsky Equation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Solutions Classification to the Extended Reduced Ostrovsky Equation
spellingShingle Solutions Classification to the Extended Reduced Ostrovsky Equation
Stepanyants, Y.A.
title_short Solutions Classification to the Extended Reduced Ostrovsky Equation
title_full Solutions Classification to the Extended Reduced Ostrovsky Equation
title_fullStr Solutions Classification to the Extended Reduced Ostrovsky Equation
title_full_unstemmed Solutions Classification to the Extended Reduced Ostrovsky Equation
title_sort solutions classification to the extended reduced ostrovsky equation
author Stepanyants, Y.A.
author_facet Stepanyants, Y.A.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description An alternative to the Parkes' approach [SIGMA 4 (2008), 053, 17 pages] is suggested for the solutions categorization to the extended reduced Ostrovsky equation (the exROE in Parkes' terminology). The approach is based on the application of the qualitative theory of differential equations which includes a mechanical analogy with the point particle motion in a potential field, the phase plane method, analysis of homoclinic trajectories and the like. Such an approach is seemed more vivid and free of some restrictions contained in [SIGMA 4 (2008), 053, 17 pages].
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149006
citation_txt Solutions Classification to the Extended Reduced Ostrovsky Equation / Y.A. Stepanyants // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT stepanyantsya solutionsclassificationtotheextendedreducedostrovskyequation
first_indexed 2025-12-07T17:57:52Z
last_indexed 2025-12-07T17:57:52Z
_version_ 1850873240487985152