Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics

We formulate an approach to the geometry of Riemann-Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2008
1. Verfasser: Vacaru, S.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149011
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics / S.I. Vacaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 45 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149011
record_format dspace
spelling Vacaru, S.I.
2019-02-19T12:56:53Z
2019-02-19T12:56:53Z
2008
Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics / S.I. Vacaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 45 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 53A99; 53B40; 53C21; 53C12; 53C44; 53Z05; 83C20; 83D05; 83C99
https://nasplib.isofts.kiev.ua/handle/123456789/149011
We formulate an approach to the geometry of Riemann-Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart-Moffat and Finsler-Lagrange spaces with connections compatible to a general nonsymmetric metric structure. Elaborating a metrization procedure for arbitrary distinguished connections, we define the class of distinguished linear connections which are compatible with the nonlinear connection and general nonsymmetric metric structures. The nonsymmetric gravity theory is formulated in terms of metric compatible connections. Finally, there are constructed such nonholonomic deformations of geometric structures when the Einstein and/or Lagrange-Finsler manifolds are transformed equivalently into spaces with generic local anisotropy induced by nonsymmetric metrics and generalized connections. We speculate on possible applications of such geometric methods in Einstein and generalized theories of gravity, analogous gravity and geometric mechanics.
This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. The work is performed during a visit at Fields Institute. Author is grateful to Professors M. Anastasiei and J. Mof fat for kind support.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics
spellingShingle Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics
Vacaru, S.I.
title_short Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics
title_full Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics
title_fullStr Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics
title_full_unstemmed Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics
title_sort einstein gravity, lagrange-finsler geometry, and nonsymmetric metrics
author Vacaru, S.I.
author_facet Vacaru, S.I.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We formulate an approach to the geometry of Riemann-Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart-Moffat and Finsler-Lagrange spaces with connections compatible to a general nonsymmetric metric structure. Elaborating a metrization procedure for arbitrary distinguished connections, we define the class of distinguished linear connections which are compatible with the nonlinear connection and general nonsymmetric metric structures. The nonsymmetric gravity theory is formulated in terms of metric compatible connections. Finally, there are constructed such nonholonomic deformations of geometric structures when the Einstein and/or Lagrange-Finsler manifolds are transformed equivalently into spaces with generic local anisotropy induced by nonsymmetric metrics and generalized connections. We speculate on possible applications of such geometric methods in Einstein and generalized theories of gravity, analogous gravity and geometric mechanics.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149011
citation_txt Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics / S.I. Vacaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 45 назв. — англ.
work_keys_str_mv AT vacarusi einsteingravitylagrangefinslergeometryandnonsymmetricmetrics
first_indexed 2025-11-28T17:34:52Z
last_indexed 2025-11-28T17:34:52Z
_version_ 1850854018188836864