The PBW Filtration, Demazure Modules and Toroidal Current Algebras

Let L be the basic (level one vacuum) representation of the affine Kac-Moody Lie algebra ^g. The m-th space Fm of the PBW filtration on L is a linear span of vectors of the form x1¼xlv0, where l ≤ m, xi Î ^g and v0 is a highest weight vector of L. In this paper we give two descriptions of the associ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2008
1. Verfasser: Feigin, E.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149014
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The PBW Filtration, Demazure Modules and Toroidal Current Algebras / E. Feigin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149014
record_format dspace
spelling Feigin, E.
2019-02-19T12:58:27Z
2019-02-19T12:58:27Z
2008
The PBW Filtration, Demazure Modules and Toroidal Current Algebras / E. Feigin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 26 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 17B67
https://nasplib.isofts.kiev.ua/handle/123456789/149014
Let L be the basic (level one vacuum) representation of the affine Kac-Moody Lie algebra ^g. The m-th space Fm of the PBW filtration on L is a linear span of vectors of the form x1¼xlv0, where l ≤ m, xi Î ^g and v0 is a highest weight vector of L. In this paper we give two descriptions of the associated graded space Lgr with respect to the PBW filtration. The ''top-down'' description deals with a structure of Lgr as a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field eθ(z)2, which corresponds to the longest root θ. The ''bottom-up'' description deals with the structure of Lgr as a representation of the current algebra g Ä C[t]. We prove that each quotient Fm/Fm-1 can be filtered by graded deformations of the tensor products of m copies of g.
This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. EF thanks B. Feigin and P. Littelmann for useful discussions. This work was partially supported by the RFBR Grants 06-01-00037, 07-02-00799 and NSh-3472.2008.2, by Pierre Deligne fund based on his 2004 Balzan prize in mathematics, by Euler foundation and by Alexander von Humboldt Fellowship.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The PBW Filtration, Demazure Modules and Toroidal Current Algebras
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The PBW Filtration, Demazure Modules and Toroidal Current Algebras
spellingShingle The PBW Filtration, Demazure Modules and Toroidal Current Algebras
Feigin, E.
title_short The PBW Filtration, Demazure Modules and Toroidal Current Algebras
title_full The PBW Filtration, Demazure Modules and Toroidal Current Algebras
title_fullStr The PBW Filtration, Demazure Modules and Toroidal Current Algebras
title_full_unstemmed The PBW Filtration, Demazure Modules and Toroidal Current Algebras
title_sort pbw filtration, demazure modules and toroidal current algebras
author Feigin, E.
author_facet Feigin, E.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Let L be the basic (level one vacuum) representation of the affine Kac-Moody Lie algebra ^g. The m-th space Fm of the PBW filtration on L is a linear span of vectors of the form x1¼xlv0, where l ≤ m, xi Î ^g and v0 is a highest weight vector of L. In this paper we give two descriptions of the associated graded space Lgr with respect to the PBW filtration. The ''top-down'' description deals with a structure of Lgr as a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field eθ(z)2, which corresponds to the longest root θ. The ''bottom-up'' description deals with the structure of Lgr as a representation of the current algebra g Ä C[t]. We prove that each quotient Fm/Fm-1 can be filtered by graded deformations of the tensor products of m copies of g.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149014
citation_txt The PBW Filtration, Demazure Modules and Toroidal Current Algebras / E. Feigin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 26 назв. — англ.
work_keys_str_mv AT feigine thepbwfiltrationdemazuremodulesandtoroidalcurrentalgebras
AT feigine pbwfiltrationdemazuremodulesandtoroidalcurrentalgebras
first_indexed 2025-12-02T03:30:23Z
last_indexed 2025-12-02T03:30:23Z
_version_ 1850861425419878400