Hochschild Homology and Cohomology of Klein Surfaces

Within the framework of deformation quantization, a first step towards the study of star-products is the calculation of Hochschild cohomology. The aim of this article is precisely to determine the Hochschild homology and cohomology in two cases of algebraic varieties. On the one hand, we consider si...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2008
Автор: Butin, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149019
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hochschild Homology and Cohomology of Klein Surfaces / F. Butin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149019
record_format dspace
spelling Butin, F.
2019-02-19T13:06:06Z
2019-02-19T13:06:06Z
2008
Hochschild Homology and Cohomology of Klein Surfaces / F. Butin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 53D55; 13D03; 30F50; 13P10
https://nasplib.isofts.kiev.ua/handle/123456789/149019
Within the framework of deformation quantization, a first step towards the study of star-products is the calculation of Hochschild cohomology. The aim of this article is precisely to determine the Hochschild homology and cohomology in two cases of algebraic varieties. On the one hand, we consider singular curves of the plane; here we recover, in a different way, a result proved by Fronsdal and make it more precise. On the other hand, we are interested in Klein surfaces. The use of a complex suggested by Kontsevich and the help of Groebner bases allow us to solve the problem.
This paper is a contribution to the Special Issue on Deformation Quantization. I would like to thank my thesis advisors Gadi Perets and Claude Roger for their ef ficient and likeable help, for their great availability, and for the time that they devoted to me all along this study. I also thank Daniel Sternheimer who paid attention to my work and the referees for their relevant remarks and their judicious advice. And I am grateful to Serge Parmentier for the rereading of my English text.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Hochschild Homology and Cohomology of Klein Surfaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Hochschild Homology and Cohomology of Klein Surfaces
spellingShingle Hochschild Homology and Cohomology of Klein Surfaces
Butin, F.
title_short Hochschild Homology and Cohomology of Klein Surfaces
title_full Hochschild Homology and Cohomology of Klein Surfaces
title_fullStr Hochschild Homology and Cohomology of Klein Surfaces
title_full_unstemmed Hochschild Homology and Cohomology of Klein Surfaces
title_sort hochschild homology and cohomology of klein surfaces
author Butin, F.
author_facet Butin, F.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Within the framework of deformation quantization, a first step towards the study of star-products is the calculation of Hochschild cohomology. The aim of this article is precisely to determine the Hochschild homology and cohomology in two cases of algebraic varieties. On the one hand, we consider singular curves of the plane; here we recover, in a different way, a result proved by Fronsdal and make it more precise. On the other hand, we are interested in Klein surfaces. The use of a complex suggested by Kontsevich and the help of Groebner bases allow us to solve the problem.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149019
citation_txt Hochschild Homology and Cohomology of Klein Surfaces / F. Butin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT butinf hochschildhomologyandcohomologyofkleinsurfaces
first_indexed 2025-12-07T17:43:30Z
last_indexed 2025-12-07T17:43:30Z
_version_ 1850872336672096256