Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics
For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be i...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2008 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2008
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/149027 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics / D. Schuch, M. Moshinsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 25 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149027 |
|---|---|
| record_format |
dspace |
| spelling |
Schuch, D. Moshinsky, M. 2019-02-19T13:08:49Z 2019-02-19T13:08:49Z 2008 Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics / D. Schuch, M. Moshinsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 25 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37J15; 81Q05; 81R05; 81S30 https://nasplib.isofts.kiev.ua/handle/123456789/149027 For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism. Both authors would like to express their gratitude to the Instituto de F´ısica, UNAM, that made possible the visit of the first author to Mexico. One of the authors (D.S.) would like to thank Dr. Robert Berger for valuable and stimulating discussions. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics |
| spellingShingle |
Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics Schuch, D. Moshinsky, M. |
| title_short |
Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics |
| title_full |
Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics |
| title_fullStr |
Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics |
| title_full_unstemmed |
Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics |
| title_sort |
wigner distribution functions and the representation of canonical transformations in time-dependent quantum mechanics |
| author |
Schuch, D. Moshinsky, M. |
| author_facet |
Schuch, D. Moshinsky, M. |
| publishDate |
2008 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149027 |
| citation_txt |
Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics / D. Schuch, M. Moshinsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 25 назв. — англ. |
| work_keys_str_mv |
AT schuchd wignerdistributionfunctionsandtherepresentationofcanonicaltransformationsintimedependentquantummechanics AT moshinskym wignerdistributionfunctionsandtherepresentationofcanonicaltransformationsintimedependentquantummechanics |
| first_indexed |
2025-12-07T20:18:52Z |
| last_indexed |
2025-12-07T20:18:52Z |
| _version_ |
1850882111933775872 |